期刊文献+

高斯曲率弹性模量对哑铃形开口膜泡形状的影响 被引量:2

The influence of the Gaussian bending modulus on the opening-up dumbbell vesicles
下载PDF
导出
摘要 基于自发曲率模型,研究了高斯曲率弹性模量(kg)对哑铃形开口膜泡形状的影响.通过打靶法数值求解开口膜泡在确定边界条件下的欧拉拉格朗日方程,计算不同kg下膜泡的平衡形状.对两类特征形状研究了kg对膜泡平衡形状的影响.对于口径较大的形状,它可以看成是一个球形和另一个部分球形用细小脖子连接起来的形状,kg对这类膜泡形状的影响主要体现在中间连接处半径rc的变化上;而对于口径较小的接近闭合状的哑铃形膜泡,kg对这类膜泡的影响体现在其开口处形状的变化上. The influence of the Gaussian bending modulus kg on the shapes of opening-up dumbbell vesicles is studied in the spontaneous-curvature model. Using the shooting method the equilibrium shapes of opening-up vesicles at different kg are calculated by solving the Euler- Lagrange equation under the corresponding boundary conditions at the membrane edge. The effects of kg on two kinds of characteristic opening-up shapes of dumbbell vesicles are investigated. One kind is the shape with large diameter of opening hole, which can be regarded as a ball and another part of the ball connected by a fine neck. For this kind of shape, the Gaussian bending modulus mainly influences the neck radius of the vesicles. Another kind is the shape with a small opening hole, which tends to closing dumbbell shapes. For this type, the variation of kg will change the shape of the opening hole.
作者 黄聪 张劭光
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期31-35,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10374063)
关键词 自发曲率模型 开口膜泡 数值计算 高斯曲率弹性模量 spontaneous-curvature model opening-up vesicles numerical calculations Gaussian bending modulus
  • 相关文献

参考文献11

  • 1Saitoh, Takiguchi K, Tanaka Y, et al. Opening-up of liposomal membranes by talin[J]. Proceedings of the National Academy of Sciences of the United States America, 1998, 95 :1026-1031.
  • 2Capovilla R, Guven J, Santiago J A. Lipid membranes with an edge [ J ]. Physical Review: E, 2002, 66, 021607.
  • 3Tu Z C, Ou-Yang Z C. Lipid membranes with free edges[J]. Physical Review:E, 2003, 68, 061915.
  • 4KANG WenBin,ZHANG ShaoGuang,WANG Ying,MU YaRong,HUANG Cong.Theoretical study of n-budding opening-up vesicle based on the spontaneous curvature model[J].Science China(Physics,Mechanics & Astronomy),2011,54(12):2243-2247. 被引量:1
  • 5Nomura F, Nagata M, Inaba T. Capabilities of liposomes for topological transformation[J]. Proceedings of the National Academy of Sciences of the United States America, 2001, 98:2340-2345.
  • 6Dempsey C E. The actions of melittin on membranes [J]. Biochimica et Biophysiea Acta (BBA), 1990,1031 : 143-161.
  • 7Helfrich W. Elastic properties of lipid bilayers [J]. Z.Naturforsch, 1973, 28c:693-703.
  • 8Ou-Yang Zhongcan, Helfrich W. Bending energy of vesicle membranes[J]. Physical Review: A, 1989, ag: 5280-5288.
  • 9Umeda T, Suezaki Y, Takiguchi K, et al. Theoretical analysis of opening-up vesicles with single and two holes [J]. Physical Review:E, 2005, 71 011913.
  • 10王颖.SC模型下新的开口膜泡形状的探究[D].西安陕西师范大学物理学与信息技术学院,2009.

二级参考文献11

  • 1Ou-Yang Z C,Helfrich W.Instability and deformation of a spherical vesicle by pressure[].Physical Review Letters.1987
  • 2Takiguchi K,Nomura F,Inaba T, et al.Liposomes possess dratica ca- pabilities for topological transformation[].The Journal of Chemical Physics.2002
  • 3Tu Z C.Compatibility between shape equation and boundary condi- tions of lipid membranes with free edges[].The Journal of Chemical Physics.2010
  • 4Wang Y.Study on the New Opening up Vesicles Under the Spon- tanous-Curvature Model[]..2009
  • 5Seifert U,Lipowsky R.Structure and Dynamics of Membranes[]..1995
  • 6Ou-Yang Z C,Helfrich W.Bending energy of vesicle membranes: General expressions for the first, second and third variation of the shape energy and applications to spheres and cylinders[].Physical Review A Atomic Molecular and Optical Physics.1989
  • 7Suezaki Y,Umeda T.The opening-up of lipid bilayer vesicles by guest molecules: The adsorption isotherm and numerical calculations[].J Op- toelectron Adv Mater.2005
  • 8Hotani,H.Transformation pathways of liposomes[].Journal of Molecular Biology.1984
  • 9Saitoh A,Takiguchi K,Tanaka Y,Hotani H.Opening-up of liposomal membranes by talin[].Proceedings of the National Academy of Sciences of the United States of America.1998
  • 10Capovilla,R.,Guven,J.,Santiago,J.A.Lipid membranes with an edge[].Physical Review.2002

同被引文献10

  • 1Canham P I3. The minimum energy of bending as a pos- sible explanation of the biconcave shape of the human red blood cell[J]. Journal of Theoretical Biology, 1970, 26 : 61-81.
  • 2Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments [J]. Zeitschrift Naturfors- ehung. Teil:C, 1973, 28(11): 693-703.
  • 3Deuling H J, Helfrich W. Red blood cell shapes as ex- plained on the basis of curvature elasticity[J]. Biophysi- cal Journal, 1976, 16: 861-868.
  • 4Seifert U. Congurations of fluid membranes and vesicles [J]. Advances in Physics, 1997, 46(1) : 13-137.
  • 5Veatch S L, Keller S L. Organization in lipid membranes containing cholesterol [J]. Physical Review Letters, 2002, 89..268101-268104.
  • 6Baumgart T, Hess S T, Webb W W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension[J]. Nature, 2003, 425: 821-824.
  • 7Yanagisawa M, Imai M, Taniguchi T. Shape deforma- tion of ternary vesicles coupled with phase separation [J]. Physical Review Letters, 2008,100:148 152.
  • 8Yanagisawa M, Imai M, Taniguchi T. Periodic modula- tion of tubular vesicles induced by phase separation[J]. Physical Review E, 2010, 82: 051928.
  • 9Jilicher F, Lipowsky R. Domain-induced budding of vesicles[J]. Physical Review Letters, 1993, 70: 2964-2967.
  • 10William H Press, Saul A Teukolsky, William T Vet- terling, et al. Numerical recipes in fortran 90 [M]. London: Cambridge University Press, 1996 : 1314-1328.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部