期刊文献+

云计算环境下基于热力学演化算法的任务调度与虚拟机分配算法研究 被引量:2

Task Scheduling and Virtual Machine Allocation Strategy Based on Thermodynamics Evolutionary Algorithm in Cloud Computing Environment
下载PDF
导出
摘要 在云计算环境下的云任务调度和虚拟机分配过程建立了数学模型,并将其转换为整数编码形式的组合优化问题,并提出了一种热力学演化算法进行问题求解。算法根据整数编码形式定义了基因熵和个体能量,并引入了温度的概念,算法中提出了两种选择策略,算法利用自由能极小值原理驱动种群向最优化方向演化。实验结果表明热力学演化算法可以有效地解决云任务调度和虚拟机分配问题,可以为云环境调度问题提供依据。 The mathematical model of cloud task scheduling and virtual machine allocation process in cloud computing cloud environment was established. And the model was transformed to the combination optimization problem with the integer encoding. The thermodynamic evolution algorithm was proposed for problem solving. In the algorithm, the gene entropy and individual energy were defined according to the integer encoding, and the concept of the temperature was introduced. Two selection strategies were designed in the thermodynamic evolution algorithm and the free energy minimum principle was used to drive the population evolution for the optimization direction. Experimental results show that the thermodynamics evolutionary algorithm can effectively solve the problem of the cloud task scheduling and the virtual machine allocation and can provide basis for the cloud environment scheduling problem.
出处 《科学技术与工程》 北大核心 2013年第15期4422-4425,4441,共5页 Science Technology and Engineering
基金 国家科技支撑计划(2012BAH25F02 2013BAF02B01) 国家青年科学基金(61202313 61203310) 江西省自然(青年)科学基金(20122BAB211036 20122BAB201044) 武汉大学软件工程国家重点实验室开放基金(SKLSE2012-09-35)资助
关键词 热力学 云任务调度 分配算法 云计算 thermodynamics cloud task scheduling allocation algorithm cloud computing
  • 相关文献

参考文献10

二级参考文献69

  • 1孙瑞锋,赵政文.基于云计算的资源调度策略[J].航空计算技术,2010,40(3):103-105. 被引量:43
  • 2尹红军,李京,宋浒,李凌.云计算中运营商效益最优的资源分配机制[J].华中科技大学学报(自然科学版),2011,39(S1):51-55. 被引量:13
  • 3周育人,闵华清,许孝元,李元香.多目标演化算法的收敛性研究[J].计算机学报,2004,27(10):1415-1421. 被引量:14
  • 4Coello Coello C A, Lamont G B, Van Veldhuizen D A. Evolutionary Algorithms for Solving Multi-Objective Problems. Second Edition. Berlin: Springer Verlag, 2007.
  • 5Van Veldhuizen D A, Lamont G B. Multiobjective evolutionary algorithms: Analyzing the state-of the-art. Evolutionary Computation, 2000, 8(2): 125-147.
  • 6Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
  • 7Fonseca C M, Fleming P J. Multiobjective optimization and multiple constraint handling with evolutionary algorithms-- Part Ⅰ: A unified formulation. IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and Humans, 1998, 28(1): 26-37.
  • 8Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 1994, 2(3): 221-248.
  • 9Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271.
  • 10Kita H, Yabumoto Y, Mori N, Nishikawa Y. Multi-objective optimization by means of the thermodynamical genetic algorithm//Proceedings of the International Conference on Parallel Problem Solving from Nature. Berlin, Germany, 1996 504-512.

共引文献162

同被引文献14

  • 1黄纬,温志萍,程初.云计算中基于K-均值聚类的虚拟机调度算法研究[J].南京理工大学学报,2013,37(6):807-812. 被引量:17
  • 2SINA E, ALI P, MAZIAR G. Structure-Aware Online Virtual Machine Consolidation for Datacenter Energy Improve- ment in Cloud Computing [J]. Computers and Electrical Engineering, 2015, 42(8):74--89.
  • 3ANTON B, RAJKUMAR B. Open Stack Neat: A Framework for Dynamic and Energy-Effient Consolidation of Virtual Machines in Open Stack Clouds [J]. Concurrency Computation, 2015, 27(5):1310--1333.
  • 4TAIMUR A S, OMER R, PETER B. VM Informant: An Instrumented Virtual Machine to Support Trustworthy Cloud Computing [J].International Journal of High Performance Computing and Networking, 2015, 8(3) : 222--234.
  • 5THOMAS H, KYRRE B, ANIS Y. Saving the Planet with Bin Packing-Experineces Using 2D and 3D Bin Packing of Virtual Machines for Greener Clouds [C]. Washington D C: Proceedings of the International Conference on Cloud Com- puting Technology and Science Cloud Corn, 2015.
  • 6AKSHI B, ISHA J, KUMAR K V. Optimized Virtual Machine Tree Based Scheduling Technique in Cloud Using K-way Trees [C]. Beijing~ Proceedings International Confrence on Cognitive Computing and Information Processing, 2015.
  • 7WALTER C. Network Performance of Multiple Virtual Machine Live Migration in Cloud Federations[J]. Journal of In- ternet Services and Applications, 2015, 6(1): 234--241.
  • 8庄威,桂小林,林建材,王刚,代敏.云环境下基于多属性层次分析的虚拟机部署与调度策略[J].西安交通大学学报,2013,47(2):28-32. 被引量:30
  • 9赵冬玲,白香芳.网络计算中任务调度防冲突算法的研究仿真[J].计算机仿真,2013,30(4):287-290. 被引量:1
  • 10荣文平.基于云计算的WEB数据挖掘技术研究[J].硅谷,2013,6(14):64-64. 被引量:1

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部