摘要
讨论参数 μ、λ变化对动力系统xn + 1=μxn(1-xλn)的影响。通过计算机模拟得出如下结果 :此动力系统的性质以其轨道的聚点个数为标志 ,当某一参数取定某一值 ,另一参数值在不同范围 ,聚点数不同 ,即动力系统处于不同状态 ;从一状态变到另一状态 ,其过渡过程产生混沌 ;聚点个数与参数取值关系的图象是一个分形结构。
The paper discusses and influence on dynamical system X n+1 =μX n(1-X λ n) owing to the change of parameters μ and λ .Computer simulation found that the nature of this dynamical system has been characterized by the number of its trace accumulation points.When one parameter is defined,the other changes in different ranges,and the number of accumulation point changes at the same time.i.e.the system get different state.When system state changes,its transitional process results in Chaos.The diagram of parameter quantity and accumulation points shown a fractal structure. [WT5HZ]
出处
《东北电力学院学报》
2000年第3期12-16,共5页
Journal of Northeast China Institute of Electric Power Engineering
基金
东北电力学院科研基金
关键词
生产函数
分形
计算机模拟
混沌性质
Production function
Chaos
Fractal
Computer simulation