期刊文献+

基于SVM的多变量函数回归分析研究(英文) 被引量:6

Choosing Multiple Parameters for Function Regression Based on SVM
下载PDF
导出
摘要 研究了通过自动调整回归因子多项参数方式提高基于SVM函数回归性能的问题。通过使用梯度下降法和遗传算法最小化SVM的归一化误差估计值来实现SVM函数回归性能的提高。大量的试验结果验证了所提出方法的性能。 Performance improvement of function regression based on Support Vector Mmachines (SVM) by automatically tuning multiple parameters of regressors was considered. This was done by minimizing some estimation of the generalization error of SVM using gradient descent and Genetic Algorithm (GA) over the set of parameters. Performance of the proposed method was illustrated by extensive experimental results.
作者 刘洛霞
出处 《电光与控制》 北大核心 2013年第6期50-57,共8页 Electronics Optics & Control
关键词 梯度下降法 遗传算法 归一化误差估计 支持向量机(SVM) gradient descent genetic algorithm normalized error estimation Support Vector Machine (SVM)
  • 相关文献

参考文献10

  • 1VAPNIK V.Estimation of dependences based on empirical Data[M].New York:Springer Verlag1982.
  • 2BARTLETT P L.For valid generalizationthe size of the weights is more important than the size of the network[M]//MOZER M CJORDAN M IPetsche T.Advances in Neural Information Processing Systems. CambridgeMA:The MIT Press1997:134-140..
  • 3GEMAN SBINENESTOCK EDOURSAT R.Neural networks and the bias/variance dilemma[J].Neural Computation19924(1):1-58.
  • 4VAPNIK V.Statistical learning theory[M].New York:John Wiley and SonsInc1998..
  • 5SMOLA A JSCHLKOPF B.A tutorial on support vector regression[D].NeuroCOLT2 technical report NC2TR1998030.London:Royal Holloway College1998..
  • 6CRISTIANINI NSHAWETAYLOR J.An introduction to support vector machines and other kernelbased learning methods[M].Cambridge:Cambridge University Press 2000..
  • 7KECMAN V.Learning and soft computing:Support vector machinesneural networksand fuzzy logic models[M].CambridgeMA:The MIT Press2001..
  • 8CHAPELLE OVAPNIK VBOUSQUET Oet al.Choosing multiple parameters for support vector machine[J].Machine Learning200246(1/2/3):131-159..
  • 9GEN MCHENG R.Genetic algorithms and engineering design[M].New York:John Wiley & Sons1997.
  • 10BURGES C J C.A tutorial on support vector machine for pattern recognition[J].Data mining and knowledge discovery19982(2):134-140..

同被引文献48

引证文献6

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部