期刊文献+

一类变分反问题的两种积变分方法及其应用 被引量:1

Two Integral-variation Methods and Applications to a Class of Inverse Variation Problem
下载PDF
导出
摘要 针对 Kd V方程势函数的变分反问题所建立的一类积变分变分反问题的两种积变分方法 ,待定系数法和直接积变分法 ,推广应用到 m Kd V方程和 Harry Dym方程势函数的变分反问题 .两种有效计算方法的有关计算与判定都可以通过 MATHEMATICA计算机建立的软件来实现 . In this paper, two integral variation methods, method of undetermined coefficients and method of direction variation integration, which were first set up for the inverse variation problem of potential functions on KdV equation, are respectively applied to the inverse variation problem of the mKdV equation and the Harry Dym equation. These calculations and decisions are accomplished by the MATHEMATICA software.
作者 张宝善
出处 《徐州师范大学学报(自然科学版)》 CAS 2000年第3期1-5,共5页 Journal of Xuzhou Normal University(Natural Science Edition)
基金 江苏省教委科研基金指导项目课题!( 99KJB5 2 0 0 0 2 )
关键词 势函数 直接积变分法 变分反问题 KDV方程 mKdV equation Harry Dym equation potential function integral variation method of undetermined coefficients method of explicit integration
  • 相关文献

参考文献7

  • 1BenjaminTB,BonaJL,MahonyJJ.Modelequationsforlongwavesnonlieardiapersivesystems[J].PhilTransRoySocLondon,1972,A272:47.
  • 2OlverPJ.Evolutionequationspossessinginfinitelymanysymmetries[J].JMathPhysSoc,1977,18:1212.
  • 3张宝善.方程的势函数序列变分反问题[J].Journal of Shanghai University(上海大学学报:英文版),.
  • 4WhithamGB.LinearandNonlinearWaves[M].NewYork:Wiley,1974.212-236.
  • 5LaxPD.Integralsofnonlinearequationsofevolutionandsolitarywaves[J].CommPureApplMath,1968,21:467.
  • 6MiuraRM.KortewegdeVriesequationandgeneralizations:aremarkableexplicitnonlineartransformation[J].JMathPhysics,1968,9(8):1202.
  • 7MagriF.AsimplemodeloftheintegrableHamiltonianequation[J].JMPhys,1978,19:1156.

同被引文献6

  • 1Fokas A S.Symmetries and Integrability[J].Studies in applied mathematics,1987,77:253~299.
  • 2Bluman G W,Kumei S.Symmetries and Differential Equations[M].New York:Springer-Verlag,1989.
  • 3Kai-Seng Chou,Qu Chang-zheng.Integrable equation arising form motions of plane curves[J].Physica D,2002,162:9~33.
  • 4Sakovich S Yu.On integrability of one third-order nonlinear evolution equation[J].Physics Letters A,2003,314:232~238.
  • 5Olver P J.Applications of Lie groups to Differential equations[M].New York:Springer-Verlag,1986.
  • 6Magri F.A simple model of the integrable Hamiltionian equation[J].J.Math.Phys.,1978,19(5):1 156~1162.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部