期刊文献+

基于个体决策机制的粒子群算法及应用

Application of Particle Swarm Optimization with Individual Decision Mechanism
下载PDF
导出
摘要 作为一种智能优化算法,粒子群算法中的粒子有不同的生活经验,因此每个粒子会做出不同的个体决策,但是这种决策机制在粒子群算法中并没有体现出来,因此本文通过引入个体决策机制的理论和方法通过个体历史适应值信息来改进粒子群算法。改进的粒子群算法应用到非线性方程组求解问题中,仿真结果表明它具有较大的优势。 As an intelligence optimization algorithm,Since each particle maintains different living experience, Thus different individual will make a different decision, However this decision mechanism cannot reflect in Particle swam optimization(PSO),herefore with the assistant of mature individual decision way and mechanism, this paper improved PSO with individual history fitness value. The improved PSO is applied into solving nonlinear equations problem, simulation results show more superior.
出处 《科技信息》 2013年第13期32-33,共2页 Science & Technology Information
基金 国家自然科学基金项目 项目编号为60975074 国家青年科学基金项目研究成果 项目编号为61003053
关键词 粒子群算法 个体决策 历史适应值 非线性方程组 Particle swarm optimization Individual decision History fitness value Nonlinear equations
  • 相关文献

参考文献7

  • 1J.Kennedy, R. C. Eberhart. Particle Swarm Optimization [C].IEEE International Conference on Neural Networks, Australia. 1995, 1942-1948.
  • 2Chen, S., Hong, X., Luk, B.L and Harris, C.J. (2009)"Non-Linear system identification using particle swarm optimisation tuned radial basis function models" [J], International Joumgl of Bio-Inspired Computation, Vol.l,No.4,pp.246-258.
  • 3Upendar, J., Singlb G.K. and Gupta, C.P.(2010)"A particle swarm optimisation based technique of harmonic elimination and voltage control in pulse-width modulated inverters"[J].Intemational Journal of Bio-Inspired Computation, Vol. 2, No. 1, pp.18-26.
  • 4陈红洲,顾国昌.一中具有感觉的微粒群算法[J].计算机技术与发展,2008(42):1299-1304.
  • 5Cai Xingjuan, Tan Ying. Dispersed Particle Swarm Optimization[C].Information Processing Letters, 2008,105(6):231-235.
  • 6马慧民,叶春明.基于文化进化的并行粒子群算法[J].计算机工程,2008,34(2):193-195. 被引量:12
  • 7Ratnaweera A. Self-organizing hierarchical particle swarm optimizer with time- varying acceleration coefficients [J]. IEEE Transactions on Evoluti-onary Computation, 2004,8(3):240-255.

二级参考文献10

  • 1马慧民,柳毅,叶春明.基于改进粒子群算法求解单级多资源约束生产批量计划问题[J].工业工程与管理,2005,10(6):66-70. 被引量:26
  • 2马慧民,叶春明.粒子群算法在贷款组合优化决策中的应用[J].计算机工程与应用,2006,42(14):219-221. 被引量:9
  • 3马慧民,叶春明,柳毅.基于改进粒子群算法的生产批量计划问题研究[J].计算机集成制造系统,2006,12(9):1417-1420. 被引量:21
  • 4Eberhard R, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]//Proceedins of the 6th International Symposium on Micro Machine and Human Science. Piscataway, NJ, USA: [s. n.], 1995.
  • 5Kennedy J, Eberhard R. Particle Swarm Optimization[C]// Proceedins of IEEE Int'l Conference on Neural Networks. Piscataway, NJ, USA: [s. n.], 1995.
  • 6Reynolds R G An Introduction to Cultural Algorithms[C]// Proceedings of the 3rd Annual Conference on Evolutionary Programming. San Diego, California: [s. n.], 1994.
  • 7艾景波,腾弘飞.文化粒子群优化算法[Z].(2006-12-10).http://www.paper.edu.cn.
  • 8Reynolds R G, Michalewicz Z, Cavaretta M. Using Cultural Algorithms for Constraint Handling in GENOCOP[C]//Proceedings of the 4th Annual Conference on Evolutionary Programming. Cambridge, Massachusetts: MIT Press, 1995: 298-305.
  • 9Chung Chan-Jin, Reynolds R G. A Testbed for Solving Optimization Problems Using Cultural Algorithms[C]//Procee,dings of the 5th Annual Conference on Evolutionary Programming. Cambridge, Massachusetts: MIT Press, 1996.
  • 10李娟,方平,周明.一种求解背包问题的混合遗传算法[J].南昌航空工业学院学报,1998,12(3):31-35. 被引量:32

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部