摘要
本文讨论了一类地下水水质污染问题 ,其数学模型是一类非线性双曲—抛物耦合方程组的初边值问题 .对这类模型建立了迎风格式 ,给出了格式的解的存在唯一性 ,严格证明了离散质量守恒原理 ,并得到了收敛性定理 .
In this paper,a sort of contamination problems of groundwater quality is discussed whose mathematical model is formed of initial boundary value problems of a class of nonlinear \{hyperbolic\} parabolic coupled equations.Upwind schemes are devised for this model.The existence and \{uniqueness\} of solutions to these schemes are given.The principle of discrete mass conservation is proved and the convergence theorem is summed up.
出处
《内蒙古工业大学学报(自然科学版)》
2000年第2期87-97,共11页
Journal of Inner Mongolia University of Technology:Natural Science Edition
关键词
双曲-抛物耦合方程组
迎风格式
地下水
水质污染
nonlinear hyperbolic parabolic coupled equations
upwind scheme
principle of discrete mass conservation
convergence theorem