期刊文献+

煤油替代燃料燃烧反应骨架机理简化 被引量:2

Skeletal Reduction of Combustion Mechanism of Kerosene Surrogate Fuels
原文传递
导出
摘要 本文采用基于特征值分析的骨架机理简化方法,对于航空煤油替代燃料正癸烷(118组分527反应)和正丙基环己烷(106组分382反应)氧化反应机理进行了简化,分别得到68组分302反应和67组分250反应骨架机理。采用骨架机理进行了着火延迟和火焰传播速度动力学模拟,并与详细机理计算结果进行了对比,结果表明,骨架机理具有较高的计算精度,该方法对于高碳氢燃料的详细机理简化具有较好的效果。 Based on the characteristic value analysis simplified method,detailed oxidation reaction mechanism of kerosene surrogate fuels n-decane(118 species and 527 reactions) and n-propylcyclohexane(106 species and 382 reactions) were simplified and skeletal mechanism was respectively obtained which contains 68 species 302 reactions and 67 species 250 reactions.The ignition delay times and laminar flame speeds were simulated using the skeletal and detailed mechanisms and their simulation results were compared,the results shown that the skeletal mechanisms had high calculation precision,the method for simplification of high hydrocarbon fuels detailed mechanism was effective.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2013年第6期1170-1173,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51036004)
关键词 特征值分析 正癸烷 正丙基环己烷 骨架机理 动力学模拟 characteristic value analysis n-decane propylcyclohexane skeletal mechanism kinetic simulation
  • 相关文献

参考文献10

  • 1Dagaut P, Cathonnet M. The Ignition, Oxidation, and Combustion of Kerosene: A Review of Experimental and Kinetic Modelling [J]. Progress in Energy and Combustion Science, 2006, 32(1): 48-92.
  • 2Dagaut P, Bakali A E, Ristori A. The Combustion of Kerosene: Experimental Results and Kinetic Modelling Using 1- to 3-Component Surrogate Model Fuels [J]. Fuel, 2006, 85(7/8): 944-956.
  • 3Seiser R, Niemann U, Seshadri K, Experimental Study of Combustion of n-Decane and JP-10 in Non-Premixed Flows [J]. Proceedings of the Combustion Institute, 2011, 33(1): 1045-1052.
  • 4Sun W, Chen Z, Cou X L, et al. A Path Flux Analysis Method for the Reduction of Detailed Chemical Kinetic Mechanisms [J]. Combustion and Flame, 2010, 157(7): 1298-1307.
  • 5Vajda S, Valko P, Turanyi T. Principal Component Anal- ysis of Kinetic Models [J]. International Journal of Chem- ical Kinetics, 1985, 17(1): 55-81.
  • 6Rabitz H, Kramer M, Dacol D. Sensitivity Analysis in Chemical Kinetics [J]. Annual Review of Physical Chem- istry, 1983, 34(1): 419-461.
  • 7Lu T, Law C K. On the Applicability of Directed Rela- tion Graphs to the Reduction of Reaction Mechanisms [J]. Combustion and Flame, 2006, 146(3): 472-483.
  • 8Bikas G, Peters N. Kinetic Modelling of n-Decane Com- bustion and Autoignition: Modelling Combustion of n- Decane [J]. Combustion and Flame, 2001, 126(1/2): 1456- 1475.
  • 9Zhukov V P, Sechenov V A, Starikovskii A Y. Autoigni- Lion of n-Decane at High Pressure [J]. Combustion and Flame, 2008, 153(1/2): 130-136.
  • 10Wang Q D, Fang Y M, Wang F, et al. Skeletal Mechanism Generation for High-Temperature Oxidation of Kerosene Surrogates [J]. Combustion and Flame, 2012, 159(1): 91 102.

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部