期刊文献+

农田土壤质地空间分布的三维随机模拟及其不确定性评价 被引量:7

3-D Stochastic Simulation and Uncertainty Assessment of Soil Texture at Field Scale
下载PDF
导出
摘要 定量描述土体三维构型对于土地利用及农田水肥管理研究极其重要。本研究根据华北山前冲积平原区一块农田内的109个土壤剖面观测数据,运用马尔科夫地质统计学方法构建了土壤质地种类的三维空间分布模型,在100次随机模拟的基础上,分别得到了土壤质地种类的优化分布图及其概率分布图。结果表明,一维嵌入转移概率模型能很好地描述农田水平和垂直方向上各土壤质地种类的空间连续性及毗邻转移趋势。优化分布图虽能直观反映土壤质地种类的空间分布特征,但存在明显的平滑效应,不能刻画土壤质地种类空间分布的不确定性。而采用概率分布的方式来描述土壤质地种类空间分布的不确定性,能够有效地克服该缺点。 Quantitative description spatial distribution of soil texture in three dimensional is very important for the studies of land use and water and fertilizer management. In this study, we constructed 3-D Markov chain model based on observation of 109 soil profiles in piedmont alluvial plain on the North China, and then optimal prediction map and occurrence probability map of soil textural classes in 3-D were obtained based on the 100 stochastic simulations. The results indicated that one-dimensional embedded Markov chain model could well describe the spatial continuity and juxtapositional tendencies of different textural classes both in horizontal and vertical directions. 3-D optimal distribution of soil texture could directly reflect the spatial distribu- tion of soil textural classes. However, it existed obvious smoothing effect and could not describe the uncertainty of spatial distri- bution of soil textures. The probability distribution map was applied to analyze the uncertainty of spatial distribution of textural classes and it could effectively overcome this shortcoming.
出处 《土壤》 CAS CSCD 北大核心 2013年第2期319-325,共7页 Soils
基金 国家重点基础研究发展规划项目(2009CB118607) 教育部新世纪优秀人才支持计划项目(NCET-07-0809)资助
关键词 土壤质地 马尔科夫 地质统计学 空间分布 不确定性 Soil texture, Markov chain, Geostatistic, Spatial distribution, Uncertainty
  • 相关文献

参考文献19

  • 1Carle, SF, Fogg GE. Transition probability-based indicator geostatistics[J]. Mathematical Geology, 1996, 28(4): 453-476.
  • 2Carle SF, Fogg GE. Modelling spatial variability with one- and multi-dimensional continuous Markov chains[J]. Ma- thematical Geology, 1997, 29(7): 891-918.
  • 3Krumbein, WC. Statistical models in sedimentology[J]. Sedimentology, 1968, 10:7-23.
  • 4Burgess TM, Webster R. Optimal sampling strategies for mapping soil types: I. Distribution of boundary spacings[J]. Soil Science, 1984, 35:641-654.
  • 5Li WD, Li BG, Shi YC. Markov chain simulation of soil textural layers[J]. Geoderma, 1999, 92(12): 37-53.
  • 6Elfeki AM, Dekking FM. A Markov chain model for sub- surface characterization: theory and applications[J]. Mathe- matical Geology, 2001, 33:569-589.
  • 7Li W, Zhang C, Burt JE, Zhu AX, Feyen J. Two-dimen- sional Markov chain simulation of soil type spatial distri- bution[J]. Soil Science Society of America Journal, 2004, 68(5): 1 479-1 490.
  • 8Weismann GS, Fogg GE. Multi-scale alluvial fan hetero- geneity modeled with transition probability geostatistics in a sequence stratigraphic framework[J]. Journal of Hydrology, 1999, 226(1): 48-56.
  • 9Weissmann GS, Carle SF, Fogg GE. Three-dimensional hydrofacies modeling based on soil surveys and transition probability geostatistics[J]. Water Resources Research, 1999, 35(6): 1 761-1 770.
  • 10Ye M, Khaleel R. A Markov chain model for characterizing medium heterogeneity and sediment layering structure[J]. Water Resources Research, 2008, 44, W09427, doi: 10.1029/2008WR006924.

二级参考文献44

共引文献120

同被引文献120

引证文献7

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部