期刊文献+

基于二次规划的三类结构支持向量机构建教学质量评价模型的研究

Model Construction for Evaluating the Quality of Teaching on the Basis of Quadratic Programming Three-Class Structured Support Vector Machine
下载PDF
导出
摘要 针对目前教学质量评价的研究现状,利用多分类支持向量机"一对一"三类结构模型对高等教育教学质量进行了评价分析,提出了一个泛化能力较强的分类模型,并能结合专家和学生评价数据智能地对其他任课教师的教学质量进行评价。通过数据实验表面,根据教师评价指标来估算教师的教学质量好坏,其评价结果更趋合理性。 The paper integrates the current researches on the evaluation of teaching quality,employs "one-to-one" three structural models in multi-class Support Vector machine to evaluate the quality of teaching in higher education,and proposes a disaggregated model which has a stronger generalization ability.Combing experts and students’ evaluation data,it can intelligently carry out evaluation of the teachers’ quality of teaching.Seen from the surface of experimental data,based on teachers’ valuating indicator to estimate good or bad quality of teaching of the teachers,its evaluation results tend to be more reasonable.
作者 袁玉萍 朱焕
出处 《湖北第二师范学院学报》 2013年第2期74-76,共3页 Journal of Hubei University of Education
基金 黑龙江八一农垦大学教育科研立项(2010) 黑龙江农垦总局科研项目(HNK11A-14-07)
关键词 教学质量 支持向量机 评价 teaching quality Support Vector machine evaluation
  • 相关文献

参考文献5

二级参考文献11

  • 1孟媛媛,刘希玉.一种新的基于二叉树的SVM多类分类方法[J].计算机应用,2005,25(11):2653-2654. 被引量:42
  • 2Vapnik V. The Nature of Statistical Learning Theory, New York: Springer-Verlag, 1995.
  • 3Boyyou I., Cortes C, Denker J S, et al. Comparison of classifier methods: A case study in handwriting digit recognition. Proceedings of the International Conference on Pattern Recognition, 1994, 77-82.
  • 4Hsu C W, I.in C J. A comparison of methods for multi-class support vector machines. IEEE Transaction on Neural Network, 2002, 13(2): 415-425.
  • 5Platt J, Cristianini N, Shawe-Taylor J. Large margin DAGs for muhiclass classification. Advances in Neural Information Proceeding Systems, 2000, 547-553.
  • 6Bredensteiner E J, Bennett K P. Multicategory classification by support vector machines. Computational Optimization and Applications, 1999, 12: 53-79.
  • 7Angulo C, Ruiz F J, Gonalez L, etal. Multiclassification by using tri-class SVM. Neural Processing I.etters, 2006, 23: 89-101.
  • 8Shashua A, Levin A. Taxonomy of large margin principle algorithms for ordinal regression problems. Neural ]nformation Processing Systems, 2002, 16.
  • 9Mehrotra S. On the implementation of a primaldual interior point method. A Publication of the Society for Induslrial and Applied Mathematics, 1992, 2(4) :575-601.
  • 10陈玉琨:<中国高等教育评价>, 广东高等教育出版社 1993年版.

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部