期刊文献+

负实数阶充满的广义J集内部分形模式的计算机构造 被引量:4

Computer Constructed Internal Fractal Structures of the Packed General Julia Sets for Negative Real Index Number
下载PDF
导出
摘要 将Pickover和Hooper提出的“ε正交法”和“星迹法”进行了推广 ,并根据推广的这两种算法 ,利用计算机构造出一系列负实数阶广义Julia集 (简称广义J集 )的内部结构图·研究表明负整数阶广义J集的内部结构具有旋转对称性和分形特征 ;负小数阶广义J集内部结构不再具有旋转对称性 ,其演化过程依赖相角主值范围的选取· The two methods of “epsilon cross” and “star trails” developed by Pickover and Hooper,respectively,were expanded.According to these two methods,a series of internal structures images of the packed general Julia sets for negative real index number were constructed by means of computer. The internal structures images of the general Julia sets for negative integer index number are rotation symmetry and fractal. The internal structures images of the general Julia sets for negative decimal index number are asymmetry and their different evolution results from the different choice of principal range for the phase angle.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2000年第4期376-379,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金!( 699740 0 8) 中国博士后科学基金 辽宁省自然科学基金资助项目!( 972 194)
关键词 广义J集 内部结构 ε正交法 计算机构造 the general Julia sets internal structures fractal
  • 相关文献

参考文献1

  • 1王兴元,东北大学学报,1999年,20卷,5期,489页

同被引文献17

  • 1MANDELBROT B B. The Fractal Geometry of Nature [M]. San Francisco: Freeman W H, 1982.1-10.
  • 2PEITGEN H O, SAUPE D. The Science of Fractal Images [M]. Berlin: Springer-Verlag, 1988.137-218.
  • 3LAKHTAKIA A, VARADEN V V, MESSIER R,et al. On the symmetries of the Julia sets for the process z←zp + c [J]. J Phys A: Math Gen, 1987,20: 3533-3535.
  • 4GUJAR U G, BHAVSAR V C, VANGALA N.Fractals images from z←za + c in the complex z-plane [J]. Comput & Graphics, 1992, 16(1):45-49.
  • 5DHURANDHAR S V, BHAVSAR V C, GUJAR UG. Analysis of z-plane fractals images from z←za+ c for a < 0 [J]. Comput & Graphics, 1993, 17(1):89-94.
  • 6HOOPER K J. A note on some internal structures of the Mandelbrot set [J]. Comput & Graphics, 1991, 15(2): 295-297.
  • 7PHILIP K W. Field lines in the Mandelbrot set[J]. Comput & Graphics, 1992, 16(4) : 443-447.
  • 8王兴元,东北大学学报,2000年,21卷,4期,376页
  • 9王兴元,东北大学学报,1999年,20卷,5期,489页
  • 10Peitgen H O,Thescienceoffractalimages,1988年,137页

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部