期刊文献+

高压输电导线非线性振动分析 被引量:7

Response Analysis of Non-linear Vibration of High-Voltage Transmission Conductors
下载PDF
导出
摘要 为研究高压输电线路导线由几何非线性引起的非线性振动特点,采用扩展的Hamilton原理建立水平悬垂输电导线的三维运动方程,并将其约化为二维振动方程,应用Galerkin方法对其进行模态截断,得到有限自由度的离散运动方程,然后使用四阶的Runge-Kutta方法对离散方程进行数值求解,得到了导线在简谐激励作用时的面内响应和面外响应.数值分析结果表明:当考虑由垂度引起的几何非线性因素时,输电导线不仅会发生主共振,还会发生次谐波共振和超谐波共振,且面外振动与面内振动之间由于发生密频内共振致使输电导线在实际振动中发生能量传递,引起非直接受激的面内产生大幅振动,同时非线性振动也会对线路振动产生调频作用. To investigate the nonlinear vibration characteristics of high-voltage transmission conductors caused by geometrical nonlinearity, the 3D dynamical equations of the horizontal suspended transmission conductors are derived through the expanded Hamilton' s principle. Then the equations are reduced to 2D dynamical e- quations and are diverted into a set of ordinary differential equations through Galerkin procedure by assuming a model deflection shape. Coupled out-of-plane and in-plane responses of the conductors under harmonic exter- nal excitation are studied by means of fouth-order Runge-Kutta method. The results show that the nonlinearity produces the primary resonance, the subharmonic resonance and the superharmonic resonance. Energy transi- tion phenomena may take place between out-of-plane vibrations and in-plane vibrations because of the internal resonance due to closely spaced natural frequencies. When the out-of-plane vibration is initiated, the in-plane vibration can be excited and the response is periodic, changing the natural vibration characteristics of the sys- tem simultaneously.
出处 《郑州大学学报(工学版)》 CAS 北大核心 2013年第3期72-75,共4页 Journal of Zhengzhou University(Engineering Science)
基金 国家自然科学基金资助项目(51108425) 国家自然科学基金委创新研究群体资助项目(50621062)
关键词 输电导线 非线性振动 主共振 次谐波共振 超谐波共振 密频内共振 transmission conductor nonlinear vibration harmonic resonance internal resonance dueprimary resonance subharmonic resonance super-to closely spaced natural frequency
  • 相关文献

参考文献4

  • 1IRVINE H M and GRIFFIN J H. On the dynamic re- sponse of a suspended cable [ J ]. Earthquake Engineer- ing and Structural Dynamics, 1976 (4) :389 - 402.
  • 2NAYFEH A H, MOOK D T. Nonlinear oscillations [M]. New York: Wiley, 1979.
  • 3MAX IRVINE H. Cables structures[ M ]. bridge: Mas- sachusetcs The MIT Press, 1981.
  • 4白鸿柏.结构密集模态的非线性相互作用及其表现[D].南京:南京航空航天大学振动工程研究所,1996.

同被引文献61

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部