期刊文献+

基于半张量积理论的二次型化简模型与实现

Model and Implementation of Quadratic Simplification Based on Semi-tensor Product
下载PDF
导出
摘要 二次型化简一般是通过施密特正交化方法构造正交矩阵,利用正交矩阵将二次型对角化来实现的.矩阵的半张量积将二次型的化简过程以矩阵乘积的形式表述,使得对角化过程清晰直观. The quadratic ted by Schmidt method simplification was usually realized by an orthogonal matrix, The process of quadratic simplification was expressed clearly a matrix multiplication by semi-tensor product which was construc- intuitively with
作者 刘旭浩 徐勇
出处 《郑州大学学报(理学版)》 CAS 北大核心 2013年第2期37-40,共4页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金资助项目 编号71071079
关键词 二次型 正交化 半张量积 quadratic form orthogonalization semi-tensor product
  • 相关文献

参考文献5

二级参考文献33

  • 1程代展.Semi-tensor product of matrices and its application to Morgen's problem[J].Science in China(Series F),2001,44(3):195-212. 被引量:53
  • 2奚传志.四元数矩阵的分解[J].四川师范大学学报(自然科学版),2006,29(4):413-414. 被引量:4
  • 3袁晖坪.行(列)对称矩阵的满秩分解和正交对角分解[J].上海理工大学学报,2007,29(3):260-264. 被引量:10
  • 4[1]Huang L., Linear Algebra in Systems and Control Theory (in Chinese), Beijing: Science Press, 1984.
  • 5[2]Zhang, F., Matrix Theory, Basic Results and Techniques, New York: Springer-Verlag, 1999.
  • 6[3]Sokolnikoff, I. S., Tensor Analysis, Theory and Applications to Geometry and Mechanics of Continua, 2nd ed., New York: John Wiley & Sons, Inc., 1964.
  • 7[4]Boothby, W. M., An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd ed., New York: Academic Press, 1986.
  • 8[5]Willems, J. L., Stability Theory of Dynamical Systems, New York: John Wiley & Sons, Inc., 1970.
  • 9[6]Ooba, T., Funahashi, Y., Two conditions concerning common quadratic Lyapunov functions for linear systems, IEEE Trans. Automat. Contr., 1997, 42(5): 719—721.
  • 10[7]Ooba, T., Funahashi, Y., Stability robustness for linear state space models——a Lyapunov mapping approach, Sys. Contr. Lett, 1997, 29. 191—196.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部