期刊文献+

一类n-李代数的自同构群及其导子李代数 被引量:2

Automorphism groups and derivation Lie algebras of a class of n-Lie algebras
原文传递
导出
摘要 对任意的n-李代数L,作者利用L的内导子李代数Inn(L)的任意模V构造了n-李代数L∝V,在此基础上利用从L到V的导子刻画了L∝V的自同构群的一个子群和导子李代数的一个子代数.对于单n-李代数L及有限维Inn(L)-模V,作者证明了从L到V的导子都是内导子. Given an n-Lie algebra L and a module V of the Lie algebra Inn(L), we construct an n-Lie algebra LocV, where Inn(L) is the Lie algebra of all inner derivations of L. Using derivations from L to V, we describe a subgroup of the automorphism group and a subalgebra of the derivation Lie algebra of LocV, generalizing corresponding results on Lie algebras. It is also shown that all derivations from a simple n-Lie algebra L to a finite dimensional Inn(L)-module V are inner.
作者 张坤
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期423-432,共10页 Journal of Sichuan University(Natural Science Edition)
关键词 自同构 导子 半直积 automorphisms, derivations, semidirect products
  • 相关文献

参考文献13

  • 1Filippov V T. n-Lie algebras [J]. Sibirsk Mat zs. 1985.26(6): 126.
  • 2Kasymov S. On a theory of n-Lie algebras[J]. Algebra Logika , 1987. 26(3): 277.
  • 3Ling W. On the structure of n-Lie algebras [D]. Siegn: University-GHS-Siegen , 1993.
  • 4James E. H unmphreys. Introduction to Lie Alegebras and Representation Theory [M].北京:世界图书出版公司,1977.
  • 5Panyushev D. Semi-direct products of Lie algebras and their invariants [J]. Publ RIMS Kyoto Univ, 2007. 43: 1199.
  • 6Richardson R W Jr. On the rigity of semi-direct products of Lie algebras [J]. Pacific J of Mathematics. 1967. 22, 339.
  • 7Weibel C A. An introduction to homological algebra [M]. Cambridge, Cambridge University Press. 1994.
  • 8Saorin M. Automorphism groups of trivial extensions [J]. J Pure and Appl Algebra. 2002.166,285.
  • 9Chevalley C. On groups of automorphisms of Lie groups [J]. Proc N A S. Mathematics. 1944. 30, 274.
  • 10Bai R. Zhang Z. Li H. et ai. The inner derivation algebrasof (n + 1)-demensional n- Lie algebras [J]. Comm Algebra. 2000. 28(6), 2927.

二级参考文献31

  • 1徐芒,方颖珏.关于Benkart-Zlemanov相交矩阵李代数[J].四川大学学报(自然科学版),2009,46(6):1620-1622. 被引量:2
  • 2Kac V G. Vertex algebras for beginners [M]. 2nd ed. Providence, Rhode Island: AMS, 1998.
  • 3Beilinson A, Drinfeld V. Chiral algebras [M]. Prov- idence, Rhode Island: AMS, 2004.
  • 4Cheng S J,Kac V G. ConIormal modules[J]. Asian J Math, 1997, 1: 181.
  • 5Andrea A D', Kac V G. Structure theory o[ {inite conformal algebras [J]. Sel math New ser 1998, 4 (3) : 377.
  • 6Bakalov B, Andrea A D', Kae V G. Theory of finite pseudoalgebras [J]. Adv Math, 2001, 162: 1.
  • 7Bakalov B, Andrea A. D', Kac V G. Irreducible modules over finite simple Lie pseudoalgebras [, primitive pseudoalgebras of type W and S [J]. Adv Math, 2006, 204(1): 278.
  • 8Bakalov B, Andrea A D', Kac V G. Irreducible modules over finite simple Lie pseudoalgebras lI, primitive pseudoalgebras of type K [EB/OL]. http: //arxiv. org/abs/1003. 6055.
  • 9Bakalov B. An algebraic approach to the operator product expansion[D]. Cambridege: Department of Mathematics, MIT, 2000.
  • 10Retakh A. Unital associative pseudoalgebras and their representations [J] J Algebra, 2004, 277 :769.

共引文献3

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部