摘要
对任意的n-李代数L,作者利用L的内导子李代数Inn(L)的任意模V构造了n-李代数L∝V,在此基础上利用从L到V的导子刻画了L∝V的自同构群的一个子群和导子李代数的一个子代数.对于单n-李代数L及有限维Inn(L)-模V,作者证明了从L到V的导子都是内导子.
Given an n-Lie algebra L and a module V of the Lie algebra Inn(L), we construct an n-Lie algebra LocV, where Inn(L) is the Lie algebra of all inner derivations of L. Using derivations from L to V, we describe a subgroup of the automorphism group and a subalgebra of the derivation Lie algebra of LocV, generalizing corresponding results on Lie algebras. It is also shown that all derivations from a simple n-Lie algebra L to a finite dimensional Inn(L)-module V are inner.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第3期423-432,共10页
Journal of Sichuan University(Natural Science Edition)
关键词
自同构
导子
半直积
automorphisms, derivations, semidirect products