期刊文献+

多机型不正常航班恢复的时空网络模型 被引量:12

The time-band model for recovery of multi-type aircrafts' disrupted flights
原文传递
导出
摘要 航空公司在执行日常飞行任务过程中,不可避免地会遇到恶劣天气、飞机故障等突发事件.此时,以最短时间、最小成本,调用可利用的资源进行航班的恢复是航空公司的重要目标.航班恢复包括飞机恢复、机组恢复及乘客恢复.其中飞机恢复是航空公司考虑的首要因素.在目前涉及飞机恢复的文献中,往往是单机型的飞机恢复,但实际中航空公司也可能调用不同机型的飞机进行航班的恢复.本文建立了单机型和多机型的时空网络模型,结合数学模型,采用Gurobi优化软件进行求解.实验结果表明,本文所提出的模型在有限时间内可以给出相对优化的恢复方案. Unpredictable events like extreme weather, mechanical failure may occur during airlines' daily fights schedule. As a result, it is airlines' primary goal that recovering disrupted flights using available resources in the lowest cost as soon as possible. Airlines recovery includes aircrafts recovery, crew recovery and passengers' recovery. Among all the concerns in the recovery, the aircraft is the first one. In most references, flights' recovery of one type aircraft is common. However, airlines may use different type of aircrafts to recovery disrupted flights. In this paper, a time-band model for multi-type aircrafts is built. In the base of mathematical model, the authors use Gurobi to solve the problem. The data used here is from a big airline in Shanghai. The experimental computational result states the method could get relatively optimal solution in finite time.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期477-483,共7页 Journal of Sichuan University(Natural Science Edition)
基金 上海市自然科学基金创新行动计划项目(10190502500) 上海市科委工程中心项目(09DZ2250400) 上海市教委重点学科项目(J50604)
关键词 飞机恢复 时空网络 多机型 航班恢复 aircraft recovery, time-band, multi-type, flight recovery
  • 相关文献

参考文献12

  • 1Kohl N. LarsenA. Larsen J, et al. Airline disruption management-perspectives. experiences and outlook [J]. Journal of Air Transport Management. 2007. 13: 149.
  • 2Niloofar J. Sayed H Z. Simultaneous recovery model for aircraft and passengers [J]. Journal of the Franklin Institute. 2011. 348: 1638.
  • 3Jay M R. Ellis L J. George L N. Rerouting aircraft for airline recovery [J]. Transportation Science. 2003.37(4): 408.
  • 4Arguello M F, Bard J F, Yu G. A GRASP for aircraft routing in response to groundings and delays [J]. Journal of Combinatorial Optimization, 1997,5: 21I.
  • 5Serge B. Jean F C. Gilbert L, et al. A large neighborhood search heuristic for the aircraft and passenger recovery problem [J]. 40R-Q J Oper Res, 2011. 9: 139.
  • 6Khaled F A. Ahmed F A. Goutham E. An integrated decision support tool for airlines schedule recovery during irregular operations [J]. European Journal of Operational Research. 2008, 185: 825.
  • 7Benjamin G T, Jonathan F B. Gang Y. Balancing user preferences for aircraft schedule recovery during irregular operations [J]. IIE Transactions, 2000. 32: 181.
  • 8Gang Y. Jonathan F B. Michael F A. Optimizing aircraft routings in response to groundings and delays [J]. IIE Transactions, 2001. 33: 931.
  • 9Le M L. Wu C C, Zhan C X. 30 years' march of mathematical programming-a classification and literature review [C]//2011 International Conference on Transportation and Mechanical &. Electrical Engineering (TMEE 2011). 2011: 113.
  • 10Le M L. Sun L H. Optimal airline crew recovery considering flight time constraint and paring rule[C]//2011 International Conference on Transportation and Mechanical &. Electrical Engineering (TMEE 2011). 2011: 118.

同被引文献108

  • 1段晓江,冯允成.启发式民用飞机机队规划[J].北京航空航天大学学报,1996,22(4):504-508. 被引量:8
  • 2Brown J. Airline fleet composition and deregulation [ J ]. Review of Industrial Organization, 1992, 8(4) :435-449.
  • 3Hane C A, Barnhart C, Johnson E L, et al. The fleet assignment problem : Solving a large-scale integerprogram [ J ]. Mathematical Programming, 1995, 70(2) :211-232.
  • 4Bahram A, Garland C, Kambiz R. The effects of market structure and technology on airline fleet composition after deregulation [ J ]. Review of Industrial Organization, 1999, 15 ( 1 ) :77-88.
  • 5Barnhart C, Kniker T S, Lohatepanont M. Itinerary- based airline fleet assignment [ J ], Transportation Science, 2002, 36(2) :199-217.
  • 6Listes O, Dekker R. A scenario aggregation-based approach for determining a robust airline fleet composition for dynamic eapacityallocation [ J ]. Transportation Science, 2005, 39(3):367-382.
  • 7Ahuja R K, Goodstein J, Mukherjee A, et al. A very large-scale neighborhood search algorithm for the combined through-fleet-assignmentmodel [ J ]. Informs Journal on Computing. 2007, 19(3), 416-428.
  • 8Sherali H D, Xiaomei Zhu. Two-stage fleet assignment model considering stochastic passengerdemands [ J ]. Operations Research, 2008, 56 (2) :383-399.
  • 9Barnhart C, Farahat A, Lohatepanont M. Airline fleet assignment with enhanced revenue modeling [ J ]. Operations Research, 2009,57 ( 1 ) :231-244.
  • 10Sherali H D, Bae K H, Haouari M. Integrated airline schedule design and fleet assignment: polyhedral analysis and benders' decomposition approach [ J ]. Informs Journal on Computing. 2010, 22 ( 4 ) : 500-513.

引证文献12

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部