期刊文献+

一维算子自定义小波有限元的构造方法研究

The construction method of one-dimensional operator custom-design wavelet finite elements
下载PDF
导出
摘要 针对工程结构中的共性问题,即算子,提出了工程结构的算子自定义小波有限元构造方法及自适应解耦计算方法。在建立了多分辨有限元空间的基础上,根据工程结构问题中的算子,即小波函数与尺度函数之间的内积关系式,提出了基于稳定完备法的算子自定义小波单元构造方法;提出自适应算子自定义小波有限元法,该方法的优点是在保持初始尺度分析结果的基础上,向局域添加所有大于局部误差阈值的算子自定义小波基,实现工程结构问题的高效分析。数值算例表明:算子自定义小波有限元法所推导的多尺度刚阵解耦比率为89.65%,自适应算子自定义小波有限元法的计算量最大降低比率为49.23%,适合工程结构问题的高效多尺度计算。 An important problem of multiscale wavelet algorithm is that the coupling terms of the scaling functions and wavelets increase rapidly as the scale increases,which results in low convergence rate for multiscale wavelet solution.According to the common feature of the operator in engineering structures,a constructive method of operator custom-design wavelet finite elements and its adaptive decoupling algorithm are proposed for engineering structural problems.For the operators defined by the inner product of scaling functions and wavelets,a new kind of one-dimensional operator custom-design wavelets is constructed in multiresolution finite element space based on stable completion.An adaptive operator custom-design wavelet finite element method is presented for engineering structural problems.The advantage of the proposed method is that engineering problems can be solved efficiently by adding operator custom-design wavelets into the local domain while keeping analysis results on the initial scale.Numerical example demonstrates that the decoupling ratio of multiscale stiffness matrix derived by operator custom-design wavelet finite element method is 89.65% and the maximum decreasing ratio of computation complexity for adaptive operator custom-design wavelet finite element method is 49.23%.It is proved that the proposed method is suitable for efficient computation of engineering structural problems.
出处 《应用力学学报》 CAS CSCD 北大核心 2013年第3期445-450,481,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(51205309,51105294) 陕西省教育厅自然科学专项(12JK0450) 工业装备结构分析国家重点实验室开放课题基金(GZ1209)
关键词 算子自定义小波有限元 自适应 稳定完备法 解耦 operator custom-design wavelet finite element method adaptive algorithm stable completion decoupling.
  • 相关文献

参考文献20

  • 1吴佰建,李兆霞,汤可可.大型土木结构多尺度模拟与损伤分析——从材料多尺度力学到结构多尺度力学[J].力学进展,2007,37(3):321-336. 被引量:47
  • 2Zhang Ling, Ouyang Jie, Zheng Supei, et al. Multiseale analysis and numerical simulation for stability of the incompressible flow of a Maxwell fluid[J]. Applied Mathematical Modelling, 2010, 34(3): 763-775.
  • 3Yu Z Y, Hoist M J, Mccammon J A. High-fidelity geometric modeling for biomedical applications[J]. Finite Elements in Analysis andDesign, 2008, 44(11).. 715-723.
  • 4Cohen A. Numerical analysis of wavelet methods[M]. Amsterdam Elsevier, 2003, 20-29.
  • 5Chen Xuefeng, Yang Shengjun, Ma Junxing. The construction of wavelet finite element and its application[J]. Finite Elements in Analysis andDesign, 2004, 40: 541-554.
  • 6Xiang Jiawei, Chela Xuefeng, He Zhengiia, et al. The construction of plane elastomechanics and Mindlin plate elements of B-spline wavelet on the interval[J]. Finite Elements in Analysis and Design, 2006, 42(14/15): 1269-1280.
  • 7Diaz L A, Martin M T, Vampa V. Danbechies wavelet beam and plate finite elements[J]. Finite Elements in Analysis and Design, 2009, 45(3): 200-209.
  • 8Li Bing, Chen Xuefeng, He Zhengjia. A wavelet-based error estimator and an adaptive scheme for plate bendingproblems[J]. International Journal of Computational Methods, 2010, 7(2): 241-259.
  • 9Wang Youming, Chen Xuefeng, He Zhengjia. A second-generation wavelet-based finite element method for the solution of partial differential equations[J]. Applied Mathematics letters, 2012, 25(11): 1608-1613.
  • 10Sweldens W. The lifting scheme: a custom-design construction of biorthogonal wavelets[J].Applied and Computational Harmonic Analysis, 1996, 3(2): 186-200.

二级参考文献21

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部