期刊文献+

稳态斜轧延伸过程的刚塑性伽辽金法模拟

Simulation of steady cross-rolling elongation process by rigid-plastic element-free Galerkin method
下载PDF
导出
摘要 将无网格伽辽金法(Element-Free Galerkin Method,EFGM)与三维刚塑性流动理论相结合,对斜轧延伸过程进行了数值模拟。详细推导了斜轧延伸过程EFGM数值模型的刚度方程,给出了初始速度场和速度边界条件的建立方法和刚性区域的处理技术。得到的轧件的物理形态和金属流动的速度场均与实际情况相符,证明了采用EFGM计算斜轧延伸过程的可行性与正确性,将无网格算法引入到了斜轧领域。并将轧制力和壁厚的计算结果与实验结果进行了比较,结果发现:实验得到的轧制力结果偏小而壁厚值却偏大,其主要原因是由于在建模时做了简化和假定,同时也受轧机弹跳的影响。 In this paper,the cross-rolling elongation process is simulated by combining the element-free Galerkin method and three-dimensional rigid-plastic flow theory.The stiffness equation of numerical model on cross-rolling elongation process is deduced based on EFGM,the initial velocity field and the velocity boundary condition are built and the tricks for treating the rigid region is given.The physical forms of rolling piece and velocity filed of metal flow,which are obtained by EFGM,conform to those in actual conditions.It is proved that it is feasible and valid for cross-rolling elongation process to be calculated by EFGM.The element-free method is introduced to cross-rolling field.The calculated values of rolling force and wall thickness are compared with measured data.It can be shown that rolling force by measurements is smaller than calculated ones,but wall thickness is reverse.The main causes may be that the model is simplified and based upon assumptions,the bounce of the roll mill is also one important reason.
出处 《应用力学学报》 CAS CSCD 北大核心 2013年第3期457-462,482,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(50954003) 山西省青年科学基金(2012021019-4) 太原科技大学博士启动基金(20122015)
关键词 无网格伽辽金法 移动最小二乘 斜轧延伸 EFGM MLS cross-rolling elongation.
  • 相关文献

参考文献17

  • 1Belytschko T, Krongauz Y. Meshless method: an overview and recent developments[J]. Comput Meth inAppl Mech Eng, 1996, 139(1/4): 3-47.
  • 2Li S, Liu W K. Numerical simulations of strain localization in inelastic solids using mesh-free methods[J]. Int J Numer Meth Eng, 2000, 48(9).. 1258-1309.
  • 3Melenk J M, Babuska I. The partition of unity finite element method: basic theory and applications[J]. Comput Meth Appl Mech Eng, 1996, 139(1/4): 289-314.
  • 4Yagawa G, Furukawa T. Recent developments of flee mesh method[J]. Int JNumerMethEng, 2000, 47(8): 1419-1443.
  • 5Onate E, Idelsohn S, Zienkiewicz O C, et al. A stabilized finite point method for analysis of fluid mechanics problems[J]. Comput Meth ApplMechEng, 1996, 139(1/4): 315-346.
  • 6Kansa E J. Multiquadrics a scattered data approximation scheme with applications to computational fluid-dynamics II solutions to parabolic, hyperbolic and elliptic partial differential equations[J]. Comp MathAppl, 1990, 19(8/9): 147-161.
  • 7李长生,刘相华,熊尚武,MARTINS Paulo António Firme.金属塑性成形过程CSPH无网格法数值模拟[J].机械工程学报,2006,42(7):144-152. 被引量:9
  • 8李长生,崔青玲,刘相华,熊尚武,P.A.F.Martins.金属塑性成形过程再生核质点无网格方法数值模拟[J].中国机械工程,2006,17(7):710-715. 被引量:6
  • 9Xiong Shangwu, Li C S, Rodrigues J M C, et al. Steady and non-steady state analysis of bulk forming processes by the reproducing kernel particle method[J]. Finite Elements in Analysis and Design, 2005(41): 599-614.
  • 10Xiong S W, Liu W K, Cao J, et al. Simulation of bulk metal forming processes using the reproducing kernel particle method[J]. Computers and Structures, 2005(83): 574-587.

二级参考文献87

  • 1[1]Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods[J]. International Journal for Numerical Methods in Fluids, 1995,20(8-9):1081-1106.
  • 2[2]Liu W K, Jun S, Li S. Reproducing kernel particle methods for structural dynamics[J]. International Journal for Numerical Methods in Engineering, 1995,38(10):1655-1679.
  • 3[3]Li S, Liu W K. Numerical simulations of strain localization in inelastic solids using mesh-free methods[J]. International Journal for Numerical Methods in Engineering, 2000,48(9):1285-1309.
  • 4[4]Jun S, Liu W K, Belytschko T. Explicit reproducing kernel particle methods for large deformation problems[J]. International Journal for Numerical Methods in Engineering, 1998,41(1):137-166.
  • 5[5]Belytschko T, Lu Y Y, Gu L. Element free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994,37(22):229-256.
  • 6[6]Melenk J M, Babuska I. The partition of unity finite element method: basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996,139(1-4):289-314.
  • 7[7]Belytschko T, Krongauz Y, Organ D. Meshless methods: an overview and recent developments[J]. Computer Methods in Applied Mechanics and Engineering, 1996,139(1-4):3-47.
  • 8[8]Chen J S, Pan C, Wu C T. A Lagrangian reproducing kernel particle method for metal forming analysis[J]. Computational Mechanics, 1998,21(3):289-307.
  • 9[9]Chen J S, Roque C, Pan C. Analysis of metal forming process based on meshless method[J]. Journal of Materials Processing Technology, 1998,80(3):642-646.
  • 10[10]Bonet J, Kulasegaram S. Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations[J]. International Journal for Numerical Methods in Engineering, 2000,47(6):1189-1214.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部