期刊文献+

边缘检测、二值化处理进行牛肉分级的应用 被引量:4

Application of Edge Detection and Binarization for Beef Grading
下载PDF
导出
摘要 采用图像处理技术自动估算牛肉眼肌横切面特征值,为基于计算机视觉的牛肉品质自动分级检测奠定基础。以牛胴体6~7肋横断面图像为试验材料,采用边缘检测、二值化处理技术等,运用VisualC++6.0编程语言,对牛肉眼肌的眼肌面积、脂肪、肌肉总面积比、脂肪分布均匀度、眼肌圆度、肌肉和脂肪色度值5个特征参数进行特征提取和检测。结果表明:经测量所得的眼肌面积越大,圆度越大,肌肉和脂肪色度值越高、大理石纹密度分布均匀的牛肉品质越好,相反,眼肌面积小、圆度小、肌肉和脂肪色度值越低、密度分布不均匀的牛肉品质低。该设计可有效计算眼肌面积和特征参数,能代替常规分级方法,实现牛肉质量等级的自动判别。 Automatic eigenvalue estimation of beef ribeye cross-section images through image processing lays the foundation for automatic beef quality grading based on computer vision technique. Digital images of the carcass cross section between the sixth and seventh ribs were subjected to feature extraction and detection of characteristic parameters (ribeye area, fat area ratio, total muscle area ratio, average fat distribution, the roundness of ribeye area and ribeye muscle and fat colors) by edge detection and binarization based on Visual C ++ 6.0. Our results showed that larger ribeye areas had better roundness, higher chromatic values of muscle and fat and more uniform distribution of marbling, indicating better quality. On the contrary, lower-quality ribeyes had smaller areas, lower roundness values and chromatic values of muscle and fat and uneven distribution of marbling. The described design enables effective calculation of ribeye areas and characteristic parameters and consequent automatic identification of beef quality grades and can be an alternative to routine ~radin~ methods.
出处 《肉类研究》 2013年第4期10-14,共5页 Meat Research
基金 国家公益性行业(农业)科研专项(201203009) 甘肃省青年科技基金项目(1107RJYA064) 国家现代农业(肉牛牦牛)产业技术体系建设专项(CARS-38)
关键词 牛肉分级 边缘检测 二值化处理 自动分级 beef grading: edge detection binarization: automatic classification
  • 相关文献

参考文献16

  • 1CHEN Shengwei, SUN Xin, QIN Chunfang, et al. Color grading of beef fat by using computer vision and support vector machine[J]. Computers and Electronics in Agriculture, 2010, 70(1 ): 27-32.
  • 2YOSHIKAWA F, TORAICHI K, WADA K, et al. On a grading system for beef marbling[J]. Pattern Recognition Letters, 2000, 21 (12): 1037-1050.
  • 3SHIRANITA K, HAYASHI K, OTUSBO A. Determination of meat quality using texture features[J]. The Institute of Electronics, Information and Communication Engineers Transactions on Information and Systems, 2000, 83(4): 1790-1796.
  • 4AASS L, FRISTEDT C G, GRESHAM J D. Ultrasound prediction of intramuscular fat content in lean cattle[J]. Livestock Science, 2009, 125(2/3): 177-186.
  • 5KAZUIIKO S, KENICHIRO H I, AKIFUMI O, et al. Grading meat quality by image processing[J]. Pattern Recognition, 2000, 33(1): 97-104.
  • 6CHEN Kunjie, QIN Chunfang. Segmentation of beef marbling based on vision threshold[J]. Computers and Electronics in Agriculture, 2008, 62(2): 223- 230.
  • 7陈坤杰,姬长英.牛肉自动分级技术研究进展分析[J].农业机械学报,2006,37(3):153-156. 被引量:20
  • 8陈坤杰,孙鑫,陆秋琰.基于计算机视觉和神经网络的牛肉颜色自动分级[J].农业机械学报,2009,40(4):173-178. 被引量:26
  • 9陈坤杰,秦春芳,姬长英.牛胴体眼肌切面图像的分割方法[J].农业机械学报,2006,37(6):155-158. 被引量:13
  • 10任发政,郑丽敏,王桂芹,廖树华,朱虹.应用MATLAB图像处理技术评判牛肉大理石花纹[J].肉类研究,2002,16(4):14-15. 被引量:19

二级参考文献145

共引文献115

同被引文献64

  • 1潘磊庆,屠康.计算机视觉对青刀豆长度及弯曲度评价的初步研究[J].食品安全质量检测学报,2014,5(3):691-696. 被引量:3
  • 2汤晓艳,周光宏,徐幸莲.大理石花纹、生理成熟度对牛肉品质的影响[J].食品科学,2006,27(12):114-117. 被引量:26
  • 3Douglas Barbin,Gamal Elmasry,Da-Wen Sun,Paul Allen.Near-infrared hyperspectral imaging for grading and classification of pork[J]. Meat Science . 2011 (1)
  • 4Mohammed Kamruzzaman,Gamal ElMasry,Da-Wen Sun,Paul Allen.Application of NIR hyperspectral imaging for discrimination of lamb muscles[J].Journal of Food Engineering.2010(3)
  • 5Feifei Tao,Yankun Peng,Yongyu Li,Kuanglin Chao,Sagar Dhakal.Simultaneous determination of tenderness and Escherichia coli contamination of pork using hyperspectral scattering technique[J]. Meat Science . 2011 (3)
  • 6NY/T 676-2010.牛肉等级规格[S]. 2010
  • 7Gamal ElMasry,Da-Wen Sun,Paul Allen.Chemical-free assessment and mapping of major constituents in beef using hyperspectral imaging[J]. Journal of Food Engineering . 2013 (2)
  • 8Douglas F. Barbin,Gamal ElMasry,Da-Wen Sun,Paul Allen.Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging[J]. Food Chemistry . 2013 (2-3)
  • 9Douglas F. Barbin,Gamal ElMasry,Da-Wen Sun,Paul Allen.Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging[J]. Analytica Chimica Acta . 2012
  • 10Di Wu,Da-Wen Sun.Colour measurements by computer vision for food quality control – A review[J]. Trends in Food Science & Technology . 2012

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部