期刊文献+

基于RISOMAP的非线性过程故障检测方法 被引量:10

Non-linear process fault detection method based on RISOMAP
下载PDF
导出
摘要 化工过程监控数据存在非线性特点,且过程常常运行于多个模态,针对该类问题,提出基于相对等距离映射(relative isometric mapping,RISOMAP)的过程故障检测方法,该方法采用相对测地距离构造高维空间的距离关系阵,运用多维尺度变换(MDS)计算其低维嵌入输出,从高维数据中提取子流形信息和残差信息分别构造监控统计量进行故障检测,同时运用核ridge回归在线计算测试数据的低维输出,核矩阵通过综合相似度进行更新。数值算例和TE过程的仿真结果表明,RISOMAP方法可以更为有效地实施故障检测,故障检测的灵敏度较高,同时也为基于流形学习的多模态过程故障检测的实施提供了一条思路。 Industrial processes are often operating under different modes, while there are nonlinear correlations between data monitored. Aiming at these problems, a fault detection method based on relative isometric mapping (RISOMAP) was proposed. Relative geodesic distance was used to establish distance matrix in the high dimensional space, and multi dimensional scaling (MDS) was used to calculate output in the low dimensional embedded space. Information of sub-manifold and error could be obtained, and then monitoring statistics were built for fault detection. Meanwhile, kernel ridge regression was used to obtain the lower dimensional output of test data. Besides, kernel matrix was updated through integrated similarity. The simulations of visualization case and TE process illustrated that in contrast to fault detection methods based on kernel principal component analysis (KPCA) and ISOMAP, the proposed method could detect process fault more effectively and quickly. It also provided an idea to implement fault detection without prior knowledge in the multimode process.
出处 《化工学报》 EI CAS CSCD 北大核心 2013年第6期2125-2130,共6页 CIESC Journal
基金 国家自然科学基金项目(61273160) 山东省自然科学基金项目(ZR2011FM014) 中央高校基本科研业务费专项资金(10CX04046A) 山东省博士基金项目(BS2012ZZ011)~~
关键词 相对测地距离 子流形 核ridge回归 故障检测 非线性过程 多模态过程 relative geodesic distance sub-manifold kernel ridge regression fault detection nonlinear process multimode process
  • 相关文献

参考文献15

  • 1Russell Leo H, Braatz Russell D. Fault Detection and Diagnosis in Industrial System [M]. London: Springer Verlag Press, 2003: 31-94.
  • 2ZengXianhua(曾宪华).Study on several issues of spectral method for manifold learning [ D]. Beijing: Beijing Jiaotong University, 2009.
  • 3Bin Shams M A, Budman H M, Duever T A. Fault detection, identification and diagnosis using CUSUM based PCA [J]. ChemicalEngineering Science, 2011, 66 (20) : 4488-4498.
  • 4Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis [J]. Chemical Engineering Science, 2004, 59 (1) : 223-224.
  • 5Zhang Muguang, Ge Zhiqiang, et al. Global local structure analysis model and its application for fault detection and identi{ication [J]. Industrial & Engineering Chemistry Research, 2011, 50 (11): 6837-6848.
  • 6马玉鑫,王梦灵,侍洪波.基于局部线性嵌入算法的化工过程故障检测[J].化工学报,2012,63(7):2121-2127. 被引量:12
  • 7Carlotta Orsenigo, Carlo Vercelliso Kernel ridge regression for out-of-sample mapping in supervised manifold learning [J]. Expert Systems with Applications, 2012, 39 (8): 7757-7762.
  • 8Shao Jidong, Rong Gang. Nonlinear process monitoring based on maximum variance unfolding projection [J]. Expert Systems with Applications, 2009, 36 (8) : 11332- 11340.
  • 9Tenenbaum Joshua B, vin de Silva, Langford John C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290 (5500): 2319-2323.
  • 10马贺贺,胡益,侍洪波.基于距离空间统计量分析的多模态过程无监督故障检测[J].化工学报,2012,63(3):873-880. 被引量:11

二级参考文献37

  • 1汪辉,皮道映,孙优贤.支持向量机在线训练算法及其应用[J].浙江大学学报(工学版),2004,38(12):1642-1645. 被引量:17
  • 2Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Computers & Chemical Engineering, 2009, 33 (4): 795 -814.
  • 3Cauwenberghs G, Poggio T. Incremental and decremental support vector machine learning. Advances in Neural Information Processing Systems, 2001, 44 (13): 409- 415.
  • 4Ma J, Theiler J, Perkins S. Accurate online support vector regression. Neural Computation, 2003, 15 ( 11 ) : 2683- 2704.
  • 5Laskov P, Gehl C, Kruger S, Muller K. Incremental support vector learning: analysis, implementation and application. Journal of Machine Learning Research, 2006, 7 (9): 1909-1936.
  • 6Alexandridis A, Sarimveis H, Bafas G. A new algorithm for online structure and parameter adaptation of RBF networks. Neural Networks, 2003, 16 (7) : 1003 -1017.
  • 7Liu Y, Hu N, Wang H, Li P. Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size. Ind. Eng. Chem. Res. , 2009, 48 ( 12 ) : 5731-5741.
  • 8Suykens J, Brabanter J, Lukas L, Vandewalle J. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing, 2002, 48 (1-4):85-105.
  • 9Cui W, Yan X. Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR. Chemometrics and Intelligent Laboratory Systems, 2009, 98 (2) :130- 135.
  • 10Cheng C, Chiu M S. A new data-based methodology for nonlinear process modeling. Chemical Engineering Science, 2004, 59 (13): 2801-2810.

共引文献31

同被引文献75

  • 1惠康华,李春利,王雪扬,许新忠.基于流形学习的“本质”维数估计[J].计算机科学,2012,39(S3):212-214. 被引量:4
  • 2黄凤良.软测量思想与软测量技术[J].计量学报,2004,25(3):284-288. 被引量:35
  • 3Zhou Donghua (周东华), Li Gang (李钢), Li Yuan (李元). Data Driven Industrial Process Fault Diagnosis Technology Based on Principal Component Analysis and Partial Least Squares (数据驱动的工业过程故障诊断技术: 基于主成分分析与偏最小二乘的方法) [M]. Beijing: Science Press, 2011:1-9.
  • 4Yin S, Ding S X, Haghani A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process [J]. Journal of Process Control, 2012, 22 (9): 1567-1581.
  • 5Alcala C F, Joe Qin S. Analysis and generalization of fault diagnosis methods for process monitoring [J]. Journal of Process Control, 2011, 21 (3): 322-330.
  • 6Zhang M, Ge Z, Song Z, et al. Global-local structure analysis model and its application for fault detection and identification [J]. Industrial & Engineering Chemistry Research, 2011, 50 (11): 6837-6848.
  • 7Garcia-Alvarez D, Fuente M J, Sainz G I. Fault detection and isolation in transient states using principal component analysis [J]. Journal of Process Control, 2012, 22 (3): 551-563.
  • 8Tong C, Yan X. Statistical process monitoring based on a multi-manifold projection algorithm [J]. Chemometrics and Intelligent Laboratory Systems, 2014, 130: 20-28.
  • 9Sprekeler H. On the relation of slow feature analysis and laplacian eigenmaps [J]. Neural Computation, 2011, 23 (12): 3287-3302.
  • 10Wong W K, Zhao H T. Supervised optimal locality multi-manifold projection algorithm [J]. Chemometrics and Intelligent Laboratory Systems, 2014, 130: 20-28.

引证文献10

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部