期刊文献+

微内容推荐路径优化的加速遗传算法研究

Research on Accelerating Genetic Algorithm of Micro-content Recommendation Path Optimization
原文传递
导出
摘要 指出随着互联网中以用户创造内容为源的微内容规模迅速增长,微内容的去中心化与碎片化等特性使网民获取信息的难度增加。针对微内容推荐同时受到用户主观偏好与用户感知行为影响这一特征,利用加速遗传算法对信息节点相似度的影响因素,从用户行为、内容偏好、社会网络关系三个方面进行有效融合,构建微内容推荐路径模型算法,并证明该算法的可行性和有效性。 The rapid growth of micro content created by users leads to the characteristics of micro content to decentration and fragmentation, which enable users to obtain information more difficult. According to the feature that the micro content recommendation is effected by user subjective preference and perceived behavior, this paper effectively fuses the influencing factors of information nodes similarity from three perspectives of user behavior, content preference and social network relations with the accelerating genetic algorithm. Finally, this paper develops a new model algorithm of micro-content recommendation path optimization based on it, and proves its feasibility and effectiveness.
作者 谭婷婷
出处 《图书情报工作》 CSSCI 北大核心 2013年第9期119-123,134,共6页 Library and Information Service
关键词 微内容 推荐路径 加速遗传算法 micro-content recommendation path accelerating genetic algorithm
  • 相关文献

参考文献12

  • 1Cms Wiki. MicroContent [ EB/OL]. [ 2007 - 12 - 06 ]. www. cmswiki, com/tiki-index, php? page = MicroContent.
  • 2刘晓敏.试论网络信息的有序组织[J].情报科学,2000,18(2):102-104. 被引量:12
  • 3Goldberg D, Nichols D, Oki B M, et al. Using collaborative filtering to weave an information tapestry [ J ]. Communications of the ACM, 1992, 35(12) :61 -70.
  • 4Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6) :734 -749.
  • 5Talabeigi M , Forsati R, Meybodi M R. A hybrid Web recommender system based on cellular learning automata [ C ]//2010 IEEE International Conference on Granular Computing, 2010:453 -458.
  • 6Melville P, Mooney R J, Nagarajan R. Content- boosted collaborative filtering for improved recommendations [ C ]// Proceedings of the 18th National Conference on Artificial Intelligence ( AAAI ' 02 ). Edmonton: AAAI Press, 2002:187 - 192.
  • 7Zhao Shiwan, Du Nan, Noniden A, et al. Improved recommendation based on collaborative tagging behaviors [ C ]//Proceedings of the International Conference on Intelligent User Interfaces. New Mexico: ACM Press,2008 : 413 -416.
  • 8Niwa S, Doi T, Honiden S. Web page recommender system based on folksonomy mining [ C ]//Proceedings of the Third International Conference on Information Technology: New Generations (ITNG' 06) ,2006 : 388 -393.
  • 9Geramell J, Shepitsen A, Mobasher B, et al, Personalizing navigation in folksonomies using hierarchical tag clustering[ C ]// Proceedings of the 10th International Conference on Data Warehousing and Knowledge Discovery. Heidelberg: Springer- Verlag Berlin, 2008 : 196 -205.
  • 10Soboroff I, Nicholas C. Combining content and collaborationin text filtering [ C ]//Proceedings of the International Joint Conference on Artificial Intelligence Workshop : Machine Learning for Information Filtering. Stockholm:Morgan-Kaufmann Publishers Inc. , 1999.

二级参考文献34

共引文献236

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部