期刊文献+

费-托合成蜡加氢裂化工艺条件的研究 被引量:6

STUDY ON HYDROCRACKING PROCESS OF F-T WAX
下载PDF
导出
摘要 通过单因素实验筛选影响费-托合成蜡加氢裂化深度的关键因素,在此基础上,采用中心复合实验设计考察各因素的单项、交互作用项以及平方项对费-托合成蜡加氢裂化转化率和中间馏分油(150~370℃)产率的影响,并调用MATLAB中的优化函数分析实验数据,确定最佳工艺条件。结果表明:在试验范围内,各因素对费-托合成蜡加氢裂化转化率影响从强到弱的顺序为:温度>液体空速>压力>氢蜡比;费-托合成蜡加氢裂化的转化率随温度升高、氢蜡比增加而增加,随压力增大、液体空速增加而减小;温度和压力的交互作用、液体空速和压力的交互作用对费-托合成蜡的裂化深度也有显著影响;确定的最佳工艺条件为温度377℃、压力5.0MPa、液体体积空速1.95h-1、氢蜡体积比820,在该条件下中间馏分油的产率达到66.3%。 It is very meaningful to optimize the hydrocracking process for obtaining high quality fuels from FT wax. After the main factors that have significant effect on the hydrocracking conversion of FT wax were determined through conditional experiment, the central composite design method was used to investigate the influence of single items, interaction items and square items of these major factors on the wax conversion and middle fraction content of products. In order to test the optimum operating conditions, full quadratic models describing the conversion of FT wax and the content of C10-22 fraction of the hydrocracking products were determined based on MATLAB. Results indicate that temperature has a significant effect on the wax conversion, followed by liquid space velocity, pressure and H2/Wax ratio; furthermore, temperature and H2/Wax ratio have a positive effect on the wax conversion while pressure and space velocity have an inverse relationship with conversion rate.The interaction items of temperature and pressure, space velocity and pressure also play a major role in the hydrocracking process.The middle fraction content may reach maximal value under the following conditions: 377 ℃, 5.0 MPa, 1.95 h-1 of WHSV, 820 V/V of H2/Wax ratio.
出处 《石油炼制与化工》 CAS CSCD 北大核心 2013年第6期85-90,共6页 Petroleum Processing and Petrochemicals
基金 国家高技术研究发展计划(863计划)(批准号2006AA05A106) 中科合成油技术有限公司的大力支持
关键词 加氢裂化 费-托合成蜡 中心复合实验设计 MATLAB 二次回归 hydrocracking F-T wax central composite design MATLAB full quadratic regression
  • 相关文献

参考文献16

  • 1Hao X.Dong G Q, Yang Y,et al. Coal to liquid CCTL) Com-mercialization prospects in China [J]. Chem Eng Technol,2007,30(9).1157-1165.
  • 2Liu Zhenyu, Shi Shidong,Li Yongwang. Coal liquefactiontechnologies—Development in China and challenges in chemi-cal reaction engineering[J]. Chem Eng Sci,2010,65 :12-17.
  • 3Calemma V, Gambaro C,Carbone R,et al. Middle distillatesfrom hydrocracking of F-T waxes: Composition, characteris-tics and emission properties [ J]. Catal Today, 2010, 149:40-46.
  • 4Eisenberg B,Fiato R A,Mauldin C H, et al. Exxon’s ad-vanced gas-to-liquids technology [J]. Stud Surf Sci Catal,1998,119:943-948.
  • 5Calemma V, Peratello S. Pavoni S,et al. Hydrocracking of amixture of long chain n-paraffins to middle distilate : Effect ofthe operating parametres and products properties[J]. StudSurf Sci Catal,2001,136:307-312.
  • 6Montgomery D C. Design and Analysis of Experiments[M].6th ed. New York: John Wiley &- Sons Ltd,2009 : 347-392.
  • 7Calemma V, Correra S, Perego C,et al. Hydroconversion ofFischer-Tropsch waxes: Assessment of the operating condi-tions effect by factorial design experiments[J]. Catal Today,2005,106:282-287.
  • 8Rossetti L, Gambaro C,Calemma V. Hydrocracking of longchain linear paraffins[J], Chem Eng J ,2009,154 :295-301.
  • 9Pellegrini L,Gamba S,Calemma V,et al. Modelling of hydro-cracking with vapour-liquid equilibrium [J]. Chem Eng Sci,2008,63:4285-4291.
  • 10Gamba S.Soave G S, Pellegrini L A. Use of normal boilingpoint correlations for predicting critical parameters of paraf-fins for vapour-liquid equilibrium calculations with the SRKequation of state [J]. Fluid Phase Equilibria,2009,276.133-141.

同被引文献51

引证文献6

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部