期刊文献+

抑制肾小球足细胞的Pinch-3基因对细胞形态及牵引力的影响

Effect of Pinch-3 Gene Interference of Glomerular Podocytes on Cell Morphology and Cell Traction Force
原文传递
导出
摘要 Pinch-3蛋白是细胞膜的重要组成成分,它直接影响细胞的形态和力学特性。本实验用基因干扰的方法比较了肾小球足细胞在Pinch-3基因表达与抑制的条件下细胞形态的变化,并测定了它对细胞牵引力的影响。结果发现,Pinch-3基因被抑制后,细胞表面出现了许多孔洞,同时细胞投影面积明显增大,平均增加了40%;细胞的牵引力则显著减小,平均减小了40%左右,细胞牵引力的最大值减小,而且细胞牵引力的分布变得分散,这说明当肾小球足细胞的Pinch-3基因的表达受到抑制以后,细胞膜上产生的孔洞影响了细胞膜的力学特性,进而影响了细胞膜的表面积和细胞牵引力的形成与分布。 Pinch-3 protein is an important constituent of cell membranes, which directly affects the cell morphology and mechanical properties. We obser;ed and compared the change of morphology and cell traction force of glomerular podocytes before and after Pinch-3 gene inhibition by gene interference technology in this experiment. We found that a number of pores appeared on the cell surface, and the cell projected area were increased at the same time, with an approximate a;erage about an increase of 40 % after Pinch-3 gene inhibition. The results showed that the cell traction force of glomerular podocytes was significantly reduced, with an approximate a;erage decrease of 40%, the maximum ;alue of the cell traction force was reduced and the distribution of cell traction force became dispersi;e. All this suggested that after Pinch-3 gene inhibition, some pores created on the cell surface influenced the physical properties of glomerular podocytes and then affected the cell projected area and influenced the formation and distribution of cell traction force of the glomerular podocytes as well.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2013年第3期530-533,共4页 Journal of Biomedical Engineering
基金 沈阳市引智计划项目资助(D20102101006)
关键词 Pinch-3基因 肾小球足细胞 基因干扰 细胞牵引力 Pinch-3 Gene~ Glomerular podocytes~ Gene interference~ Celt traction force
  • 相关文献

参考文献3

二级参考文献43

  • 1Choquet D,Felsenfeld D P and Sheetz M P.Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages[J].Cell,1997,88:39-48.
  • 2Weisenhorn AL,Khorsandi M,Kasas S,et al.Deformation and height anomaly of soft surfaces studied with an AFM[J].Nanotechnology,1993,4:106-113.
  • 3Chien S,Sung KL,Skalak R,et al.Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane[J].Biophys J,1978,24:463-487.
  • 4Harris AK,Wild P,Stopak D.Silicone rubber substrata:a new wrinkle in the study of cell locomotion[J].Science,1980,208:177-179.
  • 5Yang S,Saif T.Micromachined force sensors for the study of cell mechanics[J].Rev Sci Instrum,2005,76:044301-044308.
  • 6Butler JP,Tolic-Norrelykke IM,Fabry B,et al.Traction fields,moments,and strain energy that cells exert on their surroundings[J].Am J Physiol Cell Physiol,2002,282:C595-C605.
  • 7Tan J L,Tien J,Pirone D M,et al.Cells lying on a bed of microneedles:An approach to isolate mechanical force[J].PNAS,2003,100:1484-1489.
  • 8du Roure O,Saez A,Buguin A,et al.Force mapping in epithelial cell migration[J].PNAS,2005,102:2390-2395.
  • 9Li B,Xie L K.Development of micropost force sensor array with culture experiments for determination of cell traction forces[J].Cell Motility and the Cytoskeleton,2007,64:509-518.
  • 10Addae-Mensah K A,Kassebaum N J,Bowers,et al.A flexible,quantum dot-labeled cantilever post array for studying cellular microforces[J].Sensors and Actuators a-Physical,2007,136:385-397.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部