期刊文献+

RNA干扰血管内皮钙黏蛋白表达对Ph+急性淋巴细胞白血病细胞株Sup—B15甲磺酸伊马替尼敏感性的影响 被引量:1

Effect of VE-cadherin on sentitivity to Imatinib in Sup-B15 Philadelphia chromosome positive acute lymphoblastic leukemia cells
原文传递
导出
摘要 目的探讨下调Ph+急性淋巴细胞白血病细胞血管内皮钙黏蛋白(CD144)表达对甲磺酸伊马替尼敏感性的影响及可能的机制。方法通过慢病毒载体介导的RNA干扰(RNAi)沉默急性淋巴细胞白血病株Sup—B15细胞的CD144表达,建立CD144表达稳定下调的细胞株Sup—B15/shVEC。用CCK-8法检测甲磺酸伊马替尼对细胞增殖的影响;用AnnexinV/7一AAD标记,流式细胞术检测细胞凋亡;用流式细胞术检测CD34+CD38-细胞比例变化;荧光定量PCR检测细胞ALDHImRNA水平;Westernb1ot法检测细胞CD144、CD133、Bcr—ab1、B—catenin表达水平。结果不同浓度甲磺酸伊马替尼对Sup—B15、Sup—B15/shVEC细胞均有增殖抑制作用,其半数抑制浓度(IC50值)分别为25.1、18.7txmo1/L,两组细胞相比差异有统计学意义(P〈0.05)。20txmo1/L甲磺酸伊马替尼作用48h,Sup—B15及Sup—B15/shVEC细胞凋亡率分别为(3.03±0.72)%、(13.52±2.06)%,两组细胞相比差异有统计学意义(P〈0.05)。流式细胞术检测结果显示Sup—B15细胞CD34+CD38-细胞率明显高于Sup—B15/shVEC细胞[(2.39±0.28)%对(0.96±0.07)%],两组相比差异有统计学意义(P〈0.05)。Sup—B15/shVEC细胞与Sup—B15细胞相比,ALDH1转录水平明显下降(0.043±0.008对0.016±0.003),CD133蛋白、B—catenin总蛋白及核蛋白表达水平也明显下降,而bcr—ab1融合蛋白表达水平无明显变化。结论Sup—B15细胞CD144表达稳定下调后其对甲磺酸伊马替尼敏感性明显增高,该作用可能是通过降低p—catenin蛋白稳定性、减少p—catenin蛋白核转位实现的。 Objective To investigate the sensitivity of imatinib mesylate (IM) on Sup-B15 Ph+ acute lymphoblastic leukemia (ALL) cells knockdown of VE-cadherin (CD144) , and to further explore its mechanism. Methods CD144 in Sup-B15 leukemia cells was stably knockdowned via lentivirus-mediated RNA interference (named as Sup-B15/shVEC). The inhibitory effects of IM on Sup-B15/shVEC and Sup- B15 leukemia cells were measured by CCK-8 test, and the apoptosis of those cells was determined by Annexin V/7-AAD dyeing using flow cytomery, the percentage of CD34 + CD38- leukemia cells also by flow cy- tomtery. ALDH1 mRNA levels were detected by real-time RT-PCR, and protein levels of CD144, CD133, Bcr-abl and β-catenin by Western blot. Results IM treatment presented inhibitory effects on Sup-B15/sh- VEC and Sup-B15 leukemia cells at multiple concentrations of IM. The IC50 of IM on Sup-B15/shVEC and Sup-B15 leukemia cells were 25. 1μmol/L and 18.7μmoL/L, respectively (P 〈 0.05 ). After 48h of 20 μmol/L IM treatment, the percentages of apoptosis cell in Sup-B15/shVEC cells and Sup-B15 cell were ( 13.52±2.06) % and (3.03±0.72) %, respectively (P 〈 0.05 ). The percentage of CD34 + CD38 - cells in Sup-B15 cells was significantly higher than in Sup-B15/shVEC cells [ (2.39±0.28)% vs (0.96 ±0.07) %, P 〈 0.05). As compared to Sup-B15 cells, the transcription of ALDH1 in Sup-B15/shVEC was remarkably downregulated, and the CD133 protein level was also downregulated in Sup-B15/shVEC ceils. Both cytoplamic and nucleic β-catenin protein levels (but not for Bcr-abl levels ) decreased in Sup-B15/ shVEC cells as compare to Sup-B15 cells. Conclusion Knockdown of CD144 sensitized Sup-B15 Ph+ ALL cells to IM. The possible mechanisms underlying this phenomenon might be via inhibiting β-catenin nucleic translocation and facilitating β-catenin degradation.
出处 《中华血液学杂志》 CAS CSCD 北大核心 2013年第6期522-526,共5页 Chinese Journal of Hematology
基金 国家自然科学基金(8100210)
关键词 RNA干扰 Sup—B15细胞 伊马替尼 钙黏蛋白 药物敏感性 RNA interference Sup-B15 cell Imatinib Cadherin Drug sensitivity
  • 相关文献

参考文献11

  • 1Wang L, 0’ Leary H,Fortney J, et al. Ph + /VE-cadherin +identifies a stem cell like population of acute lymphoblasticleukemia sustained by bone marrow niche cells. Blood,2007,110: 3334-3344.
  • 2Kiel MJ, Yilmaz OH, Iwashita T, et al. SLAM family receptorsdistinguish hematopoietic stem and progenitor cells and revealendothelial niches for stem cells. Cell, 2005 , 121: 1109-1121.
  • 3Taoudi S, Gonneau C, Moore K, et al. Extensive hematopoieticstem cell generation in the AGM region via maturation of VE-cad-herin + CD45 + pre-definitive HSCs. Cell Stem Cell,2008 , 3 :99-108.
  • 4Yeung DT, Hughes TP. Therapeutic targeting of BCR-ABL: prog-nostic markers of response and resistance mechanism in chronicmyeloid leukaemia. Crit Rev Oncog, 2012,17: 17-30.
  • 5张焕新,陈翀,曾令宇,闫志凌,李振宇,徐开林.携带人VE-cadherin基因的慢病毒载体的构建及其在Sup-B15白血病细胞株的表达[J].中国实验血液学杂志,2011,19(3):574-577. 被引量:1
  • 6Buzzai M, Licht JD. New molecular concepts and targets in acutemyeloid leukemia. Curr Opin Hematol,2008 , 15: 82-87.
  • 7van der Schaft DW, Hillen F, Pauwels P, et al. Tumor cell plas-ticity in Ewing sarcoma, an alternative circulatory system stimula-ted by hypoxia. Cancer Res, 2005 , 65: 11520-11528.
  • 8Kim I, Yilmaz OH, Morrison SJ. CD144 ( VE-cadherin) is transi-ently expressed by fetal liver hematopoietic stem cells. Blood,2005,106: 903-905.
  • 9Nelsonl WJ, Nusse R. Convergence of Wnt, beta-catenin, andcadherin pathways. Science, 2004, 303 : 1483-1487.
  • 10Fleischman AG. ALDH marks leukemia stem cell. Blood, 2012,119: 3376-3377.

二级参考文献12

  • 1Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev, 2006; 20(23) :3199 -3214.
  • 2Hewat EA, Durmort C, Jacquamet L, et al. Architecture of the VE-cadherin hexamer. J Mol Biol, 2007; 365(3) :744 -751.
  • 3Kiel MJ, Yilmaz OH, lwashita T, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 2005 ; 121 (7) : 1109 - 1121.
  • 4Taoudi S, Gonneau C, Moore K, et al. Extensive hematopoietic stem cell generation in the AGM region via maturation of VE- cadherin ^+ CD45 ^+ pre-definitive HSCs. Cell Stem Cell, 2008 ; 3 ( 1 ) :99 - 108.
  • 5Wang L, O' Leary H, Fortney J, et al Ph^+/VE-cadherin^+ identifies a stem cell like population of acute lymphoblastic leukemia sustained by bone marrow niche cells. Blood, 2007; 110 (9) :3334 -3344.
  • 6Nelsonl WJ, Nusse R. Convergence of Wnt, beta-Catenin, and cadherin pathways. Science, 2004 ; 303 ( 5663 ) : 1483 - 1487.
  • 7Murphy G. The ADAMs: signalling scissors in the tumour microen- vironment. Nat Rev Cancer, 2008 ; 8 ( 12 ) :929 - 941.
  • 8Marambaud P, Shioi J, Serban G, et al. A presenilin-1/γ- secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J, 2002; 21 (8) :1948 - 1956.
  • 9Marambaud P, Wen PH, Dutt A, et al. A CBP binding transcriptional repressor produced by the PSI/ε-cleavage of N- cadherin is inhibited by PS1 FAD mutations. Cell, 2003 ; 114 (5) : 635 - 645.
  • 10Hazan RB, Qiao R, Keren R, et al. Cadherin switch in tumor progression. Ann NY Acad Sci, 2004 ; 1014 ( 1 ) : 155 - 163.

同被引文献11

  • 1Fielding AK. Current treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia[J]. Hematology Am Soc Hematol Educ Program, 2011, 2011(1): 231-237.
  • 2Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease[J]. Nat Rev Cancer, 2009, 9(9): 665-674.
  • 3Moore KA. Recent advances in defining the hematopoietic stem cell niche[J]. Curr Opin Hematol, 2004,11(2):107-111.
  • 4Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis[J]. Genes Dev, 2006, 20(23): 3199-3214.
  • 5Hendrix MJ, Seftor EA, Hess AR, et al. Molecular plasticity of human melanoma cells[J]. Oncogene, 2003, 22(20): 3070-3075.
  • 6van der Schaft DW, Hillen F, Pauwels P, et al. Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia[J]. Cancer Res, 2005, 65(24): 11520-11528.
  • 7Wang L, O’Leary H, Fortney J, et al. Ph+/VE-cadherin+ identifies a stem cell like population of acute lymphoblastic leukemia sustained by bone marrow niche cells[J]. Blood, 2007, 110(9): 3334-3344.
  • 8Zhang J, Niu C,Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size[J]. Nature, 2003, 425(6960):836-841.
  • 9Kiel MJ, Yilmaz OH, Iwashita T, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells[J]. Cell, 2005, 121(7):1109-1121.
  • 10Fleischman AG. ALDH marks leukemia stem cell[J]. Blood, 2012, 119(15): 3376-3377.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部