期刊文献+

Elastic, Piezoelectric and Acoustic Properties of Wurtzite MnO from Density Functional Calculation

Elastic, Piezoelectric and Acoustic Properties of Wurtzite MnO from Density Functional Calculation
原文传递
导出
摘要 wurtzite MnO 最近被获得了并且被期望有大潜力在改变应用。因为有弹性的性质是各种各样的应用的底,我们基于密度功能的理论计算 wurtzite MnO 的这些性质并且把它与 MnO (rocksalt 和锌闪锌矿 MnO ) 的另外的二个阶段作比较。分别地,幼仔 wurtzite 和锌闪锌矿 MnO 的模量是 65.6 GPa 和 73.4 GPa 它是比 rocksalt MnO (177.6 GPa ) 的那些低得多的。更重要地,泊松比率和体积模量砍模量比率显示 wurtzite MnO 应该比 rocksalt MnO 有更好可锻的性质。wurtzite MnO 的计算压电的常数比得上 ZnO 的那些。这建议 wurtzite MnO 是好压电的材料。而且,他们的声学的波浪的缓慢表面从 Christoffel 方程被给。 The wurtzite MnO has been obtained lately and is expected to have large potentiai in varies applications. Since elastic properties are the bases of various applications, we calculate these properties of wurtzite MnO based on the density-functionai theory and compare it with other two phases of MnO (rocksalt and zinc-blende MnO). The Young's modulus of wurtzite and zinc-blende MnO are 65.6 GPa and 73.4 GPa, respectively, which are much lower than those of rocksaJt MnO (177.6 GPa). More importantly, both the Poisson ratio and the bulk modulus to shear modulus ratio indicate that wurtzite MnO should have much better ductile properties than rocksalt MnO. The calculated piezoelectric constants of wurtzite MnO are comparable to those of ZnO, This suggests wurtzite MnO is a good piezoelectric material. Furthermore, the slowness surfaces of acoustic waves of them are given from Christoffel equation.
作者 HAN Han
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第6期751-755,共5页 理论物理通讯(英文版)
关键词 密度泛函计算 体积弹性模量 纤锌矿型 压电常数 MNO 属性 和声学 应用程序 wurtzite MnO, density functional calculation, elastic properties, piezoelectric properties, acousticproperties
  • 相关文献

参考文献36

  • 1W.S. Seo, H.H. Jo, K. Lee, B. Kim, S.J. Oh, and J.T. Park, Angew. Chem. Int. Ed. 43 (2004) 1115.
  • 2K. Zhong, X. Xia, B. Zhang, H. Li, Z. Wang, and L.J. Chen, Power Sources 195 (2010) 3300.
  • 3S. Sangaraju and A. Gedanken, J. Phys. Chem. B 110 (2006) 24486.
  • 4W.L. Roth, Phys. Rev. 110 (1958) 1333.
  • 5H. Ohno, Science 281 (2000) 951.
  • 6K.M. Nam, et al., J. Am. Chem. Soc. 134 (2012) 8392.
  • 7X. Gonze, et al., Comput. Mater. Sci. 25 (2002) 478.
  • 8J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
  • 9S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Phys. Rev. B 57 (1998) 1505.
  • 10C. Franchini, V. Bayer, R. Podloucky, J. Paler, and G. Kresse, Phys. Rev. B 72 (2005) 045132.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部