期刊文献+

基于强化学习的网络流量非线性多步预测方法

Network Traffic Nonlinear Multi-step Prediction Method Based on Reinforcement learning
下载PDF
导出
摘要 网络流量具有分形特性,用线性方法来预测非线性的网络流量,预测精度不高。为了提高测性能,提出了网络流量的非线性多步预测问题,利用一种结合分形神经网络、强化学习的非线性多步预测方法,用多重分形性质将网络流量序列分解为短相关序列,设计了一种强化学习神经网络(MRLA)流量预测模型,利用强化学习的Q算法训练BP神经网络,预测尺度系数、计算权值,最后构建MRLA网络进行仿真,预测网络流量。实验分析显示,相对MMLP网络,新预测方法具较好的多步预测性能。 Because network traffic has the characteristic of fractal, the accuracy is not high adopting the linear method to predict the non - linear network traffic. In order to improve the performance, the paper studied the problem of nonlinear multi - step prediction, and proposed a nonlinear multi - step prediction method which combines fractal neural network with reinforcement learning. A reinforcement learning neural network(MRLA) traffic prediction model was designed on basis of multi - fractal nature, and thenetwork traffic sequence was broken up into range depend- ence. With the model we trained BP neural network by Q - reinforcement learning algorithm predicting model scaling factor, and then calculated the right value. Finally, the simulation experiment was carried out to predict network traf- fic by building MRLA network. The experiment analysis shows that compare with the MMLP network, the method has better multi - step prediction performance.
出处 《计算机仿真》 CSCD 北大核心 2013年第6期284-287,共4页 Computer Simulation
基金 黑龙江省自然科学基金项目(F201218) 齐齐哈尔大学青年教师科研启动支持计划项目(2011k-M05) 黑龙江省高等学校教改工程项目(JG2012010679)
关键词 网络流量 分形特性 非线性多步预测 强化学习 神经网络 Network traffic Fractals characteristics Nonlinear multi - step prediction Reinforcement learning Neural network
  • 相关文献

参考文献9

  • 1Y Baryshnikov, et al. Traffic Prediction on the Intemet[ R]. New York : Columbia University, 2002.
  • 2D Morato, et al. On linear prediction of internet traffic for packet and burst switching networks [ C ]. ICCCN, Scottsdale, Arizona, USA, 2001:138 - 143.
  • 3M Lee. Video traffic prediction based on source information and preventive channel rate decision for RCBR[ J]. IEEE Transactions on Broadcasting, 2006,52(2) : 1 - 11.
  • 4A F Atiya, M A Aly, A G Parlos. Sparse basis selection: new re- sults and application to adaptive prediction of video source traffic [J]. IEEE Trans Neural Networks, 2005,16(5) : 1136 -1146.
  • 5王升辉,裘正定.结合多重分形的网络流量非线性预测[J].通信学报,2007,28(2):45-50. 被引量:40
  • 6J B Gao, I Rubin. Multifractal analysis and modeling of VBR vid- eo traffic [ J ]. Electronics Letters, 2000,36 ( 3 ) : 278 - 279.
  • 7王升辉,裘正定.MPEG-4视频流量多重分形建模[J].通信学报,2006,27(10):44-50. 被引量:5
  • 8V Alarcon- Aquino, J A Barria. Multiresolution FIR neural- network -based learning algorithm applied to network traffic pre- diction [ J ]. IEEE Trans Systems, Man, and Cybernetics - Part C : Applications and Reviews, 2006,36 ( 2 ) :208 - 220.
  • 9Y Liang, X Liang. Improving signal prediction performance of neural networks through muhiresolution learning approach [ J ]. IEEE Trans Systems, Man, and Cybernetics - Part B : Cybernet- ics, 2006,36(2): 341 -352.

二级参考文献31

  • 1王升辉,裘正定.MPEG-4视频流量多重分形建模[J].通信学报,2006,27(10):44-50. 被引量:5
  • 2HEYMAN D,TABATABAI A,LAKSHMAN T V.Statistical analysis and simulation study of video conference traffic in ATM networks[J].IEEE Trans Circuits and Systems for Video Technology,1992,2(1):49-59.
  • 3MAGLARIS B,ANASTASSIOU D,SEN P,et al.Performance models of statistical multiplexing in packet video communications[J].IEEE Trans Commun,1988,36(7):834-844.
  • 4GARRETT M,WILLINGER W.Analysis,modeling and generation of self-similar VBR video traffic[A].ACM SIGCOMM'94[C].London,UK,1994.269-280.
  • 5HUANG C,DEYETSIKIOTIS M,LAMBADARIS I,et al.Fast simulation for self-similar traffic in ATM networks[A].Proc of IEEE IC C[C].Seattle,USA,1995.438-444.
  • 6KANG S H,ZAKHOR A.Effective bandwidth based scheduling for streaming media[J].IEEE Trans on Multimedia,2005,7(6):1139-1148.
  • 7FELDMANN A,HUANG P,GILBERT A C.Dynamics of IP traffic:a study of the role of variability and the impact of control[A].Proceedings of ACM/SIGCOMM99[C].Cambridge,Massachusetts,Unites States,1999.301-313.
  • 8RIEDI R H,CROUSE M S,RIBEIROV,et al.A multifractal wavelet model with application to network traffic[J].IEEE Transaction on Information Theory,1999,45(4):992-1018.
  • 9KRISHNA V,GADRE,DESAI U.Multiplicative multifractal process based modeling of broadband traffic processes:variable bit rate video traffic[A].International Zurich Seminar on Broadband Communications[C].ETH Zurich,2002.18-1-18-6.
  • 10HUANG X D,ZHOU Y H,ZHANG R F.A multiscale model for MPEG-4 varied bit rate video traffic[J].IEEE Trans on Broadcasting,2004,50(3):323-334.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部