摘要
网络流量具有分形特性,用线性方法来预测非线性的网络流量,预测精度不高。为了提高测性能,提出了网络流量的非线性多步预测问题,利用一种结合分形神经网络、强化学习的非线性多步预测方法,用多重分形性质将网络流量序列分解为短相关序列,设计了一种强化学习神经网络(MRLA)流量预测模型,利用强化学习的Q算法训练BP神经网络,预测尺度系数、计算权值,最后构建MRLA网络进行仿真,预测网络流量。实验分析显示,相对MMLP网络,新预测方法具较好的多步预测性能。
Because network traffic has the characteristic of fractal, the accuracy is not high adopting the linear method to predict the non - linear network traffic. In order to improve the performance, the paper studied the problem of nonlinear multi - step prediction, and proposed a nonlinear multi - step prediction method which combines fractal neural network with reinforcement learning. A reinforcement learning neural network(MRLA) traffic prediction model was designed on basis of multi - fractal nature, and thenetwork traffic sequence was broken up into range depend- ence. With the model we trained BP neural network by Q - reinforcement learning algorithm predicting model scaling factor, and then calculated the right value. Finally, the simulation experiment was carried out to predict network traf- fic by building MRLA network. The experiment analysis shows that compare with the MMLP network, the method has better multi - step prediction performance.
出处
《计算机仿真》
CSCD
北大核心
2013年第6期284-287,共4页
Computer Simulation
基金
黑龙江省自然科学基金项目(F201218)
齐齐哈尔大学青年教师科研启动支持计划项目(2011k-M05)
黑龙江省高等学校教改工程项目(JG2012010679)
关键词
网络流量
分形特性
非线性多步预测
强化学习
神经网络
Network traffic
Fractals characteristics
Nonlinear multi - step prediction
Reinforcement learning
Neural network