期刊文献+

基于人工鱼群优化的扩展卡尔曼粒子滤波算法

Extended Kalman Particle Filter Algorithm Based on Artificialfish School Algorithm Optimization
下载PDF
导出
摘要 针对扩展卡尔曼粒子滤波算法中由于粒子退化和贫化而导致的滤波精度降低问题,提出了一种人工鱼群优化的扩展卡尔曼粒子滤波算法。通过人工鱼群优化算法中的觅食和聚群行为,对采样过程进行优化,使得粒子不断地朝高似然域移动来寻找最优位置,从而改善样本分布,加速样本集的收敛,缓解了退化现象;然后对重采样过程进行优化,以提升样本的多样性,从而克服了粒子样本贫化问题。实验结果表明,改进后算法提高了对系统状态的预估精度,更适合在对精度要求高的系统中进行滤波计算。 Considering the problem of declining in accuracy caused by particles degeneracy and impoverishment in the extended Kalman particle filter algorithm, an artificial fish school optimized extended Kalman particle filter al- gorithm was presented in this paper. It uses the alternation of behaviors of preying and swarming in the artificial fish school algorithm to optimize the sampling process firstly, which makes prior particles move towards the high likelihood region and finds the optimal position, so particles samples was improved, the convergence of particles sample was ac- celerated and the phenomenon of particles degeneracy was relieved. Then the re - sampling process was optimized, as a result, the diversity of samples was enhanced. The problem of sample impoverishment was also resolved. Experi- mental results show that the improved algorithm improves the estimation accuracy of the system state and the algorithm is more suitable for filtering calculation based on high precision requirement system.
出处 《计算机仿真》 CSCD 北大核心 2013年第6期326-330,共5页 Computer Simulation
关键词 粒子滤波 扩展卡尔曼粒子滤波 人工鱼群 状态预估 Particle filter Extended kalman particle filter Artificial fish school algorithm State estimation
  • 相关文献

参考文献12

  • 1Petar M Djuric, et al. Particle filtering[ J]. IEEE SignalProcessing Magazine, 2003,20 ( 5 ) : 19 - 38.
  • 2K Bogdan. Finding Location using a part icle filter and histogram matching [ C ]. Proc of Artificial Intelligenceand Soft Computing, Poland : Springer, 2004:786 - 791.
  • 3M Isard, Blake. Contour tracking bystoc hastic propagation of con- ditional density [ C ]. European Conference on Computer Vision, UK : Cambridge, 1996:343 - 356.
  • 4S Thrun. Particle filters in robotics [ C ]. Proc of Uncertainty in AI. San Franeisc - o : Morgan Kaufmann Publishers, 2002 : 511 -518.
  • 5A Doucet, N Gordon, V Krishnamurthy. Particle filters for state estimation of jump Markov linear systems[ J]. IEEE Transactions on Signal Processing,2001,49 ( 3 ) :613 - 624.
  • 6F G De Freitas. Bayesian methods for LONDON neuralnetworks [ D]. [ S. 1. ] : Camb - ridge University, 1999.
  • 7A Doucet, S Godsill, C Andrieu. On Sequen -tial Monte Carlo Sampling Methods for Bayesian Filtering [ J ]. Statistics and Com- puting, 2000,10 (3) : 197 - 208.
  • 8陆陶荣,朱林户,李德芳,柳宏杰,夏文俊.一种集群智能粒子滤波算法[J].西安电子科技大学学报,2008,35(3):536-541. 被引量:10
  • 9胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 10李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60

二级参考文献19

  • 1辛云宏,杨万海.基于伪线性卡尔曼滤波的两站红外无源定位及跟踪技术[J].西安电子科技大学学报,2004,31(4):505-508. 被引量:10
  • 2王来雄,黄士坦.一种新的粒子滤波算法[J].武汉大学学报(工学版),2006,39(1):118-120. 被引量:15
  • 3李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 4N J Gordon, D J Salmond, A F M Smith. Novel approach to non- linear/non- Gaussian Bayesian state estimation[ J ]. IEEE Proc. Radar Signal Process, 1993,140 (2) : 107 - 113.
  • 5Jayesh H Kotecha, Peter M Djuric. Gaussian sum partical filtering [ J]. IEEE Trans. Signal Processing,2003,51:2602.
  • 6.I S Liu, R Chen. Monte Carlo methods for dynamic systems [J].Journal of American Statistical Association, 1998, 93:1038 - 1044.
  • 7Fredrik Gustafsson, Fredrik Gunnarsson, Niclas Bergman, Urban Forssell, Jonas Jansson, Rickard Karlsson, Per - Johan Nordlund. Particle Filters For Positioning, Navigation and Tracking[ J]. Final version for IEEE Transactions on Signal Processing. Special issue on Monte Carli methods for statistical signal processing: 1 -12.
  • 8N Bergman, A Doucet. Markov Chain Monte Carlo Date Association for Target Tracking[ C]. IEEE Proc. Aeoust, Speech, Signal Process, 2001. 735 -739.
  • 9叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 10Gordon N J,Salmond D J,Smith A F M.A Novel Approach to Nonlinear/non-Gaussian Bayesian State Estimation[J].IEEE Proceedings on Radar and Signal Processing,1993,140 (2):107-113.

共引文献362

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部