期刊文献+

QPSO算法和罚函数在代谢通量评估中的应用 被引量:1

Quantum-behaved Particle Swarm Optimization Algorithm and Penalty Function in the Application of the Metabolic Flux Estimation
下载PDF
导出
摘要 针对代谢通量的评估问题属于带约束的优化问题,提出了使用罚函数(penalty function,PF)的量子粒子群优化(Quan-tum-behaved particle swarm optimization,QPSO)算法来解决上述问题,通过处罚约束条件建立单一的目标函数,把带约束的化学计量转换成无约束的,然后使用QPSO算法最小化内部代谢通量。算法可用于评估谷氨酸棒杆菌(Corynebacterium glu-tamicum)的内部代谢通量,实验结果表明,提出的算法能够以较快的收敛速度找到较好的接近最优点的量化值。 Metabolic flux estimation corresponds to a constrained optimization problem. In this paper, we pro- posed a Quantum- behaved particle swarm optimization (QPSO) with penalty function to solve13C -based metabolic flux estimation problem. The stoichiometric constraints were transformed to an unconstrained one, by penalizing the constraints and building a single objective function, which in turn was minimized using QPSO algorithm for flux quan- tification. The proposed algorithm was applied to estimate the central metabolic fluxes of Corynebacterium glutami- cum. Experimental results illustrate that our algorithm is capable of achieving fast convergence to good near - optima.
出处 《计算机仿真》 CSCD 北大核心 2013年第6期346-350,共5页 Computer Simulation
关键词 代谢通量评估 带约束优化 量子粒子群优化算法 罚函数 Metabolic flux estimation Constrained optimization problem Quantum- behaved particle swarm opti- mization (QPSO) Penalty function (PF)
  • 相关文献

参考文献12

  • 1Y Matsuoka, K Shimizu. The relationships between the metabolic fluxes and ^13 C - labeled isotopomer distribution for the flux analysis of the main metabolic pathways[J]. Biochemical Engineering Jour- nal, 2010,49(3) :326 -336.
  • 2W Wiechert. ^13C Metabolic Flux Analysis [ J ]. Metabolic Engi- neering, 2001,3(3) : 195 -206.
  • 3B Christensen, J Nielsen. Metabolic network analysis of Penicilli-um chrysogenum using ^13C -labeled glucose [ J]. Biotechnology and Bioengineering, 2000,68(6) :652 - 659.
  • 4J Zhao, K Shimizu. Metabolic flux analysis of Escherichia coli K12 grown on ^13C - labeled acetate and glucose using GC - MS and powerful flux calculation method [ J ]. Journal of Biotechnology, 2003,101 (2) : 101 - 117.
  • 5R K Bhandohal, M Singh. Evolutionary programming method for optimization[J]. International Journal of Engineering and Informa- tion Technology, 2010,2( 1 ) :48 -54.
  • 6Sun Jun, Xu Wenbo, Feng Bin. Adaptive parameter control for quantum- behaved particle swarm optimization on individual level [ C ]. IEEE International Conference on Systems, Man and Cyber- netics, Hawaii, USA, 2005:3049 - 3054.
  • 7方伟,孙俊,谢振平,须文波.量子粒子群优化算法的收敛性分析及控制参数研究[J].物理学报,2010,59(6):3686-3694. 被引量:116
  • 8K Parsopoulos. Particle swarm optimization method for constrained optimization problems[ M]. IOS Press, 2002.
  • 9X Hu, R Eberhart. Solving constrained nonlinear optimization problems with particle swarm optimization [ C ]. In Proceedings of the 6th World Multiconference on Systemics, Cybernetics and In- formatics, Orlando, USA, 2002,5 : 884 - 889.
  • 10J Yang, et al. Metabolic Flux Estimation-A Self-Adaptive Ev- olutionary Algorithm with Singular Value Decomposition [ J ]. IEEE/ACM Transactions on Computational Biology and Bioinfor- matics, 2007,4( 1 ) : 126 - 138.

二级参考文献7

共引文献115

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部