摘要
针对传感器动态的非线性、动态特性,精确建模比较难。为此,提出一种非线性的传感器动态建模方法。首先将LSS-VM参数作为蚂蚁的位置向量,传感器动态建模精度作为目标函数,然后采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,并在最优蚂蚁邻域内进行小步长局部搜索,找到算法的最优参数,最后建立传感器动态模型。结果表明,ACO-LSSVM所建模型具有较强的实用性和可靠性,为改善传感器动态性能及在线补偿提供了参考依据。
The paper proposed a nonlinear sensor dynamic modeling algorithm for the r dynamic of Sensor. The parameters of LSSVM model were considered the position vector of ants while the accuracy of sensor dynamic model was taken as the objeet function, and then target individuals were determined by dynamic and stochastic extraction which make ants search global rapidly, and carried out small step search for the optimal ant of this generation. Last- ly, the optimal parameter value was obtained by ACO, and the sensor dynamic model was built. The results show that the proposed method is reliable and practicable, and it creates favorable conditions for proving dynamic performance and online compensation of the sensors.
出处
《计算机仿真》
CSCD
北大核心
2013年第6期370-373,共4页
Computer Simulation
基金
河南省科技攻关计划(122102210518)
河南省教育厅科学技术研究重点项目(12A520042)
关键词
传感器
最小二乘支持向量机
蚁群优化算法
动态建模
Senor
Least square support vector machine (LSSVM)
Ant colony optimization algorithm( ACO )
Dy- namic modeling