期刊文献+

基于MCS的多状态复杂系统可靠性评估 被引量:6

Reliability evaluation of multi-state complex systems based on MCS
下载PDF
导出
摘要 同时考虑了部件选择性失效传播引起的共因失效以及系统的不完全保护,提出了一种面向多状态复杂系统的基于蒙特卡洛模拟(MCS)的可靠性评估算法.传统方法只能解决可以转化为串、并联结构的简单系统的可靠性评估问题,而本文提出的算法打破了这种限制,使得其应用范围更加广泛.最后,通过两个示例说明了算法的有效性以及其因失效与不完全保护对系统可靠性的影响. This paper presents a multi-state complex systems oriented method of evaluating the reliability based on Monte Carlo simulation (MCS) with selective effect and imperfect protections resulted from components with propagated failures. The traditional methods have the limitation that they can only be used to solve the problems of reliability evaluation of simple systems which can be decomposed into series and parallel structures. But the proposed method overcomes the limitation and has broader applications. The two given examples illustrate the validity of the proposed algorithm and the influence of CCFs and imperfect protections over systems reliability.
作者 阮渊鹏 何桢
出处 《系统工程学报》 CSCD 北大核心 2013年第3期410-418,共9页 Journal of Systems Engineering
基金 国家自然科学基金重点资助项目(70931004) 国家杰出青年科学基金资助项目(71225006)
关键词 多状态复杂系统 部件选择性失效传播 不完全保护 蒙特卡洛模拟 multi-state complex system components with propagated failures having selective effect imperfect protections Monte Carlo simulation
  • 相关文献

参考文献17

  • 1Gregory L, Xing Liudong. Reliability and performance of multi-state systems with propagated failures having selective effect[J]. Reliability Engineering and System Safety, 2010, 95(6): 655-661.
  • 2Gregory L, Xing Liudong, Hanoch B H, et al. Multi-state systems with selective propagated failures and imperfect individual and group protections[J]. Reliability Engineering and System Safety, 2011, 96(12): 1657-1666.
  • 3Goble W M, Brombacher A C, Bukowski J V. Using Stress-strain Simulations to Characterize Common Cause[M]. New York: Springer, 1998.
  • 4Roy D, Dasgupta T. A discretizing approach for evaluating reliability of complex systems under stress-strength model[J]. IEEE Transactions on Reliability, 2001, 50(2): 145-150.
  • 5Myers A. k-out-of-n: G system reliability with imperfect fault coverage[J]. IEEE Transactions on Reliability, 2007, 56(3): 464-473.
  • 6Xing L. Reliability evaluation of phased-mission systems with imperfect fault coverage and common-cause failures[J]. IEEE Trans- actions on Reliability, 2007, 56(1): 58-58.
  • 7陈光宇,黄锡滋,唐小我.不完全覆盖的多层次系统可靠性分析[J].系统工程学报,2005,20(5):504-510. 被引量:8
  • 8Xing L, Dugan J B, Morrissette B A. Efficient reliability analysis of systems with functional dependence loops[J]. Maintenance and Reliability, 2009, 3(43): 65-69.
  • 9郑龙,周经伦,郑敏,潘正强.网络系统可靠性分析的频域生成图模型[J].系统工程学报,2009,24(1):114-118. 被引量:2
  • 10Ramirez-Marquez J E, Coit D W. A Monte-Carlo simulation approach for approximating multi-state two-terminal reliability[J]. Reliability Engineering and System Safety, 2005, 87(2): 253-264.

二级参考文献37

  • 1Satyaranayanna A. A unified formula for analysis of some network reliability problems[J]. Trans. on Reliability, 1982, 31 ( 1 ) : 23--32.
  • 2Satyaranayanna A. New topological formula and rapid algorithms for reliability analysis of complex networks [ J J. IEEE Transactions on Reliability, 1978, 27( 1 ) : 82--100.
  • 3Satyaranayanna A. Network reliability and the factoring theorem[ J]. Networks, 1983, 13 (1) : 107--120.
  • 4Ogata K. System Dynamics[M]. (Fourth Edition) 北京:机械工业出版社,2005.
  • 5魏巍.MATLAB应用数学工具箱技术手册[M].北京:国防工业出版社,2003.
  • 6Lin Y K. Reliability of a stochastic-flow network with unreliable branches & nodes under budget constraints [ J ]. IEEE Transactions on Reliability, 2004, 53 (3) : 381 - 386.
  • 7Lin Y K. A simple algorithm for reliability evaluation of a stochastic-flow network with node failure [ J ]. Computers & Operations Research, 2001, 28(13) : 1277 - 1285.
  • 8Lin Y K. On reliability of a stochastic-flow network in terms of minimal cut sets[ J ]. Journal of Chinese Institute of Industrial Engineers, 2001, 18(3) : 49 -54.
  • 9Yeh W C. Search for all d-mincuts of a limited-flow network [ J ]. Computer & Operations Research, 2002, 29 (13) : 1843 - 1858.
  • 10Lin Y K. Using minimal cuts to evaluate the system reliability of a stochastic-flow network with failures at nodes and arcs [J]. Reliability Engineering and System Safety, 2002, 75(1 ): 41 -46.

共引文献138

同被引文献42

  • 1周金宇,谢里阳,王学敏.多状态系统共因失效分析及可靠性模型[J].机械工程学报,2005,41(6):66-70. 被引量:19
  • 2Lin Y K. Reliability of a Computer Network in Case Capacity Weight Varying with Arcs, Nodes and Types of Commodity [J]. Reliability Engineering System Safety, 2007, 92(5): 646-652.
  • 3Dohmen K. Inclusion-exclusion and Network Relia- bility [J]. The Electronic Journal of Combinatorics, 1998, 5(1): 1-8.
  • 4Fratta L, Montanari U. A Boolean Algebra Method for Computing the Terminal Reliability in a Com- munication Network[J]. IEEE Transactions on Cir- cuit Theory, 1973, 20(3): 203-211.
  • 5Moskowitz F. The Analysis of Redundancy Net- works [J]. American Institute of Electrical Engi- neers, Part I: Transactions of the Communication and Electronics, 1958, 77(5): 627-632.
  • 6Hsu S J, Yuang M C. Efficient Computation ofTerminal-pair Reliability Using Triangle Reduction in Network Management [C]//Proceedings of IEEE International Conference on Communications. At- lanta, 1998: 281-285.
  • 7Rocco S C M, Zio E. Solving Advanced Network Reliability Problems by Means of Cellular Automata and Monte Carlo Sampling [J]. Reliability Engi- neering & System Safety, 2005, 89(2): 219-226.
  • 8Billinton R, Allan N R. Reliability Evaluation of Engineering Systems, Concepts and Techniques [M]. New York: Plenum Press, 1992.
  • 9Fishman G S. A Comparison of Four Monte Carlo Methods for Estimating the Probability of s-t Con- nectedness [J]. IEEE Transactions on Reliability, 1986, 35(2) :145-155.
  • 10Rocco S C M, Moreno J A. Network Reliability Assessment Using a Cellular Automata Approach [J]. Reliability Engineering & System Safety, 2002, 78(3): 289-295.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部