期刊文献+

二阶非自伴两点边值问题Garlerkin有限元的超收敛算法

ALGORITHM OF SUPER-CONVERGENCE FOR GALERKIN FEM FOR SECOND ORDER NON-SELF-ADJOINT BOUNDARY-VALUE PROBLEM
下载PDF
导出
摘要 提出了基于改进位移模式的二阶非自伴两点边值问题Garlerkin有限元的超收敛算法.用常规有限元解的位移模式与高阶有限元解的位移模式之和构造新的位移模式,基于Garlerkin方法,采用积分形式推导了单元平衡方程.对于线性单元,本文给出了有代表性的算例,结点和单元的位移、导数都达到了h4阶的超收敛精度. An algorithm of super-convergence for the Garlerkin FEM (finite element method) for the second order non-self-adjoint boundary-value problem is proposed based on the improved displacement mode. The new displacement mode is constructed by combining the displacement mode of the conventional finite clement and the high-order displacement mode based on the Galerkin method, and the element equilibrium equation is derived using the integral form. A representative example is presented for the Hermite element in this paper, the accuracies of the displacements and the derivatives accuracy of nodes and elements have reached the order of h^4.
出处 《力学与实践》 北大核心 2013年第3期72-75,71,共5页 Mechanics in Engineering
基金 湖南省自然科学基金资助项目(08JJ3011)
关键词 GALERKIN有限元 非自伴问题 位移模式 超收敛 Galerkin FEM (finite element method), non-self-adjoint boundary-value problem, displacement mode, super-convergence
  • 引文网络
  • 相关文献

参考文献5

二级参考文献23

  • 1钟万勰.哈密尔顿阵本征向量辛正交的物理意义[J].大连理工大学学报,1993,33(1):110-111. 被引量:1
  • 2王枚,袁驷.Timoshenko梁单元超收敛结点应力的EEP法计算[J].应用数学和力学,2004,25(11):1124-1134. 被引量:19
  • 3钟万勰.弹性平面扇形域问题及哈密顿体系[J].应用数学和力学,1994,15(12):1057-1066. 被引量:23
  • 4钟万勰,徐新生,张洪武.Hamilton体系与与弹性力学Saint-Venant问题[J].应用数学和力学,1996,17(9):781-789. 被引量:8
  • 5陈传淼.有限元超收敛构造理论[M].长沙:湖南科学技术出版社,2002..
  • 6Zienkiewicz O C, Zhu J Z. The superconvergence patch recovery and a posteriori error estimator, part Ⅰ: the superconvergence patch recovery [J]. International Journal for Numerical Methods in Engineering, 1992, 33:1331-1364.
  • 7Yuan Si. From matrix displacement method to FEM: loss and recovery of stress accuracy [A]. Invited Papers,Proceedings of 1st International Conference on Structural Engineering [C], ed. Long Yuqiu, Beijing: TsinghuaUniversity Press, 1999. 134-141.
  • 8Strang G, Fix G. An analysis of the finite element method[M]. Englewood, Cliffs, N.J.: Prentice-Hall, 1973.
  • 9Tong P. Exact solution of certain problems by finite-element method [J]. AIAA Journal, 1969, (7):178-180.
  • 10袁驷.样条厚薄板通用矩形单元[J].力学学报,1984,16(4):401-407.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部