期刊文献+

考虑预报因子选择的神经网络降雨径流模型 被引量:6

Neural Network Model of Rainfall-Runoff Process Considering Selection of Prediction Factors
下载PDF
导出
摘要 为优化神经网络模型的应用效果,研究了基于神经网络的降雨-径流模型,根据Copula熵法确定预报因子,并与传统的线性相关法进行比较分析,采用BP、RBF、GRNN三种神经网络建立降雨-径流模型,应用均方根误差、合格率、确定性系数三个指标为模型选取评价准则。通过对金沙江流域的径流预报,发现基于Copula熵法的BP模型预报结果更接近实测值,精度更高。 To optimize the applied effect of neural network model,this paper studies rainfall-runoff model based neural network.Compared with the traditional linear correlation method,Copula entropy method is used to determine prediction factors.BP(Back Propagation) neural network,RBF(Radical Basis Function) neural network and GRNN(Generalized Regression NN) neural network are adopted to establish the rainfall-runoff model.And then,the root-mean-square error(RMSE),the qualification rate(QR) and the deterministic coefficient(DC) are taken as the evaluation criteria for selection of model.Forecasting runoff of Jinshajiang Basin indicates that the forecasting results of BP model based Copula entropy method is closer to the observed value and it has higher precision.
出处 《水电能源科学》 北大核心 2013年第6期21-25,共5页 Water Resources and Power
基金 国家自然科学基金资助重点项目(51239004) 华中科技大学研究生创新创业基金资助项目(HF-11-05-2013) 华中科技大学国家级大学生科技创新训练基金资助项目
关键词 神经网络模型选取 水文预报 预报因子选择 Copula熵 selection of neural network model hydrological forecasting selection of prediction factors Copula entropy
  • 相关文献

参考文献9

  • 1Battitid R. Using Mutual Information for SelectingFeatures in Supervised Neural Net Learning [J].IEEE Transactions on Neural Networks,1994,5(4):537-550.
  • 2梁国华,习树峰,王本德.基于BP神经网络的旬降雨径流相关预报模型[J].水力发电,2009,35(8):10-12. 被引量:17
  • 3Cigizoglu H K. Generalized Regression Neural Net-work Inmonthly Flow Forecasting [J]. Civil Engi-neering and Environmental Systems,2005,22( 2):71-84.
  • 4Sharma A. Seasonal to Interannual Rainfall Probabi-listic Forecasts for Improved Water Supply Man-agement:Parti a Strategy for System PredictorIdentification[J]. Journal of Hydrology,2000,239:232-239.
  • 5马健,孙增圻.Mutual Information Is Copula Entropy[J].Tsinghua Science and Technology,2011,16(1):51-54. 被引量:20
  • 6May R J,Maier H R,Dandy G C. Non-linear Varia-ble Selection for Artificial Neural Networks UsingPartial Mutual Information[J]. Environmental ModellingSoftware,2008,23(10-11):1 312-1 326.
  • 7Fernando T M K G,Maier H R,Dandy G C. Selec-tion of Input Variables for Data Driven Models:AnAverage Shifted Histogram Partial Mutual Informa-tion Estimator Approach[J]. Journal of Hydrology,2009,367(3-4):165-176.
  • 8徐晨光,李春静,赵麦换.串联水库洪水预报模型影响因素及精度分析[J].人民黄河,2008,30(7):34-35. 被引量:3
  • 9Bowden G J,Maierb H R,Dandy G C. Input Deter-mination for Neural Network Models in Water Re-sources Applications. Part 2. Case Study:Forecas-ting Salinity in a River[J],Journal of Hydrology,2005,30l(l-4):93-107.

二级参考文献23

  • 1钱镜林,张晔,刘国华.基于小波分解的径流预报非线性模型[J].水力发电学报,2006,25(5):17-21. 被引量:5
  • 2蓝永超,杨志怀,权建民,刘延平.灰色预测模型在径流长期预报中的应用[J].中国沙漠,1997,17(1):49-52. 被引量:11
  • 3Hsu K L, Gupta H V, Sorooshian S. Artificial neural network modeling of the rainfall runoff process [J]. Water Resource Re search(USA), 1995, 31(10):2517-2530.
  • 4董霞.基于GFS降雨预报信息的PSRM模型研究与应用[D].大连:大连理工大学.2006.
  • 5飞思科技研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005.
  • 6De la Pe a V,Ibragimov R,Sharakhmetov S.Characteriza-tions of joint distributions,copulas,information,depend-ence and decoupling,with applications to time series. . 2006
  • 7Davy M,Doucet A.Copulas: A new insight into positive time-frequency distributions. IEEE Signal Processing Let-ters . 2003
  • 8Jenison R,Reale R.The shape of neural dependence. Neu-ral Computation . 2004
  • 9Kraskov A,St gbauer H,Grassberger P.Estimating mutual information. Physical Review . 2004
  • 10Shannon CE.A mathematical theory of communication. Bell System Technical Journal, The . 1948

共引文献37

同被引文献91

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部