期刊文献+

WZ方法与一个二项式级数的部分和公式

WZ Method and a Formula for the Partial Sum of a Binomial Series
原文传递
导出
摘要 本文基于WZ理论给出了Peter Paule与Carsten Schneider的一篇文章中的一个二项式级数的部分和公式的新证明,并且发现他们的文章中所给的另一个二项式级数的部分和公式实际上是错误的,我们给出了其相应的一个正确公式. In this paper,based on WZ theory,a new proof for a truncating binomial series (the identity for a(K)/m,n(x),where n≥2,0≤x≤1) in one paper of Peter Paule and Carsten Schneider was given,at the same time,it was pointed out that another truncating binomial series(the identity for am,1(K)(x),where n = 1,0≤x1) in the paper mentioned above is wrong,and a corresponding correct formula was given,where,for K,m,n∈N, K≥m+1≥n,a(K)m,n(x) =(m/n-1))KΣk=m+1×1/kn×mΣj=o(kj)χk-j(1-χ)j.
作者 陈奕俊
出处 《应用数学学报》 CSCD 北大核心 2013年第3期448-453,共6页 Acta Mathematicae Applicatae Sinica
关键词 WZ方法 无穷级数 无穷级数的部分和 WZ method infinite series partial sum of an infinite series
  • 相关文献

参考文献7

  • 1Israel R B. Persistence of a Distribution Function. Amer. Math. Monthly, 1988,95(4): 360-362.
  • 2Blorn G. Problem 6522. Amer. Math. Monthly, 1986, 93(6): 485.
  • 3Lengyel T. An Invariant Sum Related to Record Statistics. Integers: Electronic Journal of Combinatorial Number Theory, 2007, 7: #A40.
  • 4Paule P, Schneider C. Truncating Binomial Series with Symbolic Summation. Integers: Electronic Journal of Combinatorial Number Theory, 2007, 7: #A22.
  • 5Schneider C. Symbolic Summation in Difference Fields. PhD Thesis RISC, J. Kepler University Linz, Austria, 2001.
  • 6Graham R L, Knuth D E, Patshnik O. Concrete Mathematics. MA: Addison-Wesley, 1994.
  • 7Petkovsek M, Wilf H S, Zeilberger D. A=B. MA: A K Peters, 1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部