期刊文献+

关节型机器人的似人操作构型规划 被引量:2

Human-like manipulation planning for articulated manipulator
下载PDF
导出
摘要 对关节型机器人的操作构型进行规划时,本文提出了一种新的规划方法,它结合了似人评估准则和机器人传速特性优化的概念,可实现有最大末端传速特性的操作,同时与人类手臂操作的特点最为相似.该方法首先利用应用人体工程学中的快速上肢评价准则(RULA)对机器人的操作空间进行划分,然后在各子空间内最大化机器人末端沿指定方向的传速速率.最终选定一个最符合人类操作特性又同时满足操作任务的机器人操作构型.通过在2自由度平面机器人和7自由度拟人机械臂上的规划实验进一步展示了本方法的使用,规划结果验证了其有效性. In planning the operation configuration for an articulated manipulator, we propose a novel method which combines the concept of human-like assessment and the velocity transmission ratio. By this method of planning, the manipulator can perform operations most similar to the operations of a human arm, with maximal velocity transmission ratio at its end-effector. The criterion of the rapid upper limb assessment (RULA) which is widely used in applied ergonomics has been adopted to divide the robot operation configuration space into different subregions, in which the velocity transmission ratio of the manipulator along a specified direction is maximized. Then, the final planning result which satisfies the task requirements with the most human-like operations is determined. Illustrative examples of this method applied to a 2 degrees of freedom (DOF) planar robot and a 7-DOF humanoid arm validate its effectiveness.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2013年第5期549-557,共9页 Control Theory & Applications
基金 国家自然科学基金资助项目(61175113) 国家高技术研究发展计划资助项目(2006AA040402 2007AA041703 2009AA043903-1-1) 江苏省科技成果转化资助项目(BA2007058) 江苏省普通高校研究生科研创新计划资助项目(CX10B 076Z) 东南大学优秀博士学位论文基金资助项目
关键词 操作构型规划 似人程度 快速上肢评价 应用人体工程学 传速速率 manipulation planning human-like rapid upper limb assessment applied ergonomics velocity transmission ratio
  • 相关文献

参考文献16

  • 1POTKONJAK V, TZAFESTAS S, KOSTIC D, et al. Human-like be- havior of robot arms: general considerations and the handwriting task-Part I: mathematical description of human-like motion: dis- tributed positioning and virtual fatigue [J]. Robotics and Computer- Integrated Manufacturing, 2001, 17(4): 305 - 315.
  • 2SVININ M, YAMAMOTO M. A mathematical analysis of the min- imum variance model of human-like reaching movements [C]//Pro- ceedings of lEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). San Francisco, CA, USA: IEEE, 2011: 4386- 4391.
  • 3BAE J H, YANG W, KIM D, et al. Robotic ann control inspired by human muscle tension effect under the gravity [C] //Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Shanghai: IEEE, 2011: 1404 - 1411.
  • 4BAUER C, MILIGHETTI G, YAN W, et al. Human-like reflexes for robotic manipulation using leaky integrate-and-fire neurons [C]//Pro- ceedings of lEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Taiwan: IEEE, 2010:2572 - 2577.
  • 5SETO F, SUGIHARA T. Online nonlinear reference shaping with end-point position feedback for human-like smooth reaching mo- tion [C]//Proceedings of lEEE/RSJ International Conference on Hu- manoid Robots. Paris: IEEE, 2009: 297- 302.
  • 6SVININ M, GONCHARENKO I, LUO Z W, et al. Modeling of human-like reaching movements in the manipulation of flexible ob- jects [C]//Proceedings of lEEE/RSJ International Conference on In- telligent Robots and Systems. Beijing: IEEE, 2006:549 - 555.
  • 7KIM S, KIM C H, PARK J H, et al. Human-like arm motion gener- ation for humanoid robots using motion capture database [C]//Pro- ceedings of lEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing: IEEE, 2006:3486 - 3491.
  • 8ASFOUR T, AZAD P, VAHRENKAMP N, et al. Toward humanoid manipulation in human-centered environments [J]. Robotics and Au- tonomous Systems, 2008, 56(1): 54 - 65.
  • 9FARIA D R, MARTINS R, LOBO J, et al. Extracting data from hu- man manipulation of objects towards improving autonomous robotic grasping [J]. Robotics and Autonomous Systems, 2012, 60(3): 396 - 410.
  • 10ZACHARIAS E SCHLETTE C, SCHMIDT F, et al. Making planned paths look more human-like in humanoid robot manipulation plan- ning [C]//Proceedings of lEEE International Conference on Robotics and Automation (ICRA). Shanghai: IEEE, 2011 : 1192 - 1198.

同被引文献14

  • 1熊有伦.机器人技术基础[M].武汉:华中科技大学出版社,2008:32-50.
  • 2Yoshikawa T. Manipulability of robotic mechanisms [J]. International Journal of Robotics Research, 1985, 4(2): 3-9.
  • 3Mansouri I, Duali M. A new homogeneous manipula- bility measure of robot manipulators based on power concept[J]. Mechatronics, 2009, 19(6): 927-944.
  • 4Mayorga R V, Carrera J, Oritz M M. A kinematics performance index based on the rate of change of a standard isotropy condition for robot design optimiza- tion[J]. Robotics and Autonomous Systems, 2005, 53(3-4) : 153-163.
  • 5Zacharias F, Borst C, Hizinger G. Capturing robot workspace structure: representing robot capabilities [C]//Proc of IEEE/RSJ International Conference on Intelligent Robots and Systems. New York~ IEEE, 2007 : 3229-3236.
  • 6Saff E B, Kuijlaars A B. Distributing many points on a sphere[J]. Mathematical Intelligencer, 1997, 19(1) : 5-11.
  • 7Howard I S, Ingrain J N, Konrad P. Statistics of natural movements are reflected in motor errors[J].Journal of Neurophysiology, 2009, 102 (3).. 1902- 1910.
  • 8于秀丽,魏世民,廖启征.仿人机器人发展及其技术探索[J].机械工程学报,2009,45(3):71-75. 被引量:41
  • 9谢碧云,赵京.基于条件数约束的方向可操作度[J].机械工程学报,2010,46(23):8-15. 被引量:20
  • 10方承,丁希仑.面向人臂三角形动作基元的拟人臂运动学[J].机器人,2012,34(3):257-264. 被引量:10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部