期刊文献+

正癸烷热解的小规模化学动力学机理模型 被引量:2

Small-Scale Chemical Kinetic Mechanism Models for Pyrolysis of n-Decane
下载PDF
导出
摘要 正癸烷是目前常用的吸热型燃料的替代组分,但是其热解机理的研究迄今还很少,且现有的少数几个机理由于规模庞大使用不便.本文首先构建了一个包含33种组分和75个基元反应的正癸烷热解动力学机理模型(Mech33);随后,在该机理的基础上进一步通过灵敏度分析得到影响主要热裂解组分生成的速率控制步,并采用局部平衡和稳态假设对Mech33机理简化得到了规模更小的、仅包含22种组分和59步反应动力学机理模型(Mech22).在较宽的温度和压力范围内对流动反应器及激波管中正癸烷热解过程进行了数值模拟,并与实验数据进行了对比,结果表明,Mech33和Mech22两个动力学机理模型都能够很好地描述正癸烷热裂解过程,并准确预测主要热裂解产物的浓度分布,为进一步实现化学反应与计算流体力学(CFD)耦合的工程计算提供了有价值的动力学机理模型. n-Decane is a component of commonly used fuels, but so far studies into its pyrolysis mechanism are rare and the few existing mechanisms are inconvenient to use owing to their large scales. A small-scale chemical kinetic model (Mech33) for describing the process of n-decane pyrolysis containing 33 species and 75 elementary reactions was constructed. Based on partial equilibrium and quasi-steady state assumptions through sensitivity analysis, a smaller kinetic model (Mech22) containing 22 species and 59 reactions was developed from Mech33. Simulations of n-decane pyrolysis using these two models were compared with experimental data from flow reactor and shock tube over a wide range of temperatures and pressures. The results showed that Mech33 and Mech22 could reproduce the process of n-decane pyrolysis well and accurately predict the concentrations profile of main products, and finally provide valuable chemical kinetic models for engineering simulations when coupled with computational fluid dynamics (CFD).
作者 姚通 钟北京
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2013年第7期1385-1395,共11页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(51036004)资助项目~~
关键词 正癸烷 热解 化学动力学机理模型 灵敏度分析 简化模型 n-Decane Pyrolysis Chemical kinetic mechanism model Sensitivity analysis Reduced model
  • 相关文献

参考文献35

  • 1Emeric, D.; Marc, B.; Olivier, H.; Marie, P. M.; Gascoin, N.; Gillard, P. Fuel Reforming for Scram jet Thermal Management and Combustion Optimization. AIAAlCIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference, Capua, Italy, May 16-20,2005.
  • 2Falempin, F.; Bouchez, M.; Salmon, T.; Lespade, P.; Avrashkov, V. An Innovative Technology for Fuel-Cooled Composite Materials Structure. AIAAlNAL-NASDA-ISAS 10th International Space Planes and Hypersonic Systems and Technologies Conference, Kyoto, Japan, April 24-27, 2001.
  • 3Emeric, D.; Marc, B.; Roda, B.; Battin, F. L.; Marie, P. M.; Rene, F. Contribution to Scramjet Active Cooling Analysis Using N-dodecane Decomposition Model. 12th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, Virginia, America, December 15-19, 2003.
  • 4Huang, H.; Sobel, D. R; Spadaccini, L. J. Endothermic Heat-Sink of Hydrocarbon Fuels for Scramjet Cooling. 38th AIAAlASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, America, July 7 -11, 2002.
  • 5Dagaut, P.; Reuillon, M.; Boettner, J. C.; Cathonnet, M. Symp. Int. Combust. 1994,25 (1),919. doi: 10.1016/S0082-0784(06) 80727-7.
  • 6Dagaut, P.; Bakali, E. A; Ristori,A. Fuel 2006, 85 (7-8), 944.
  • 7Humer, S.; Frassoldati, A; Granata, S.; Faravelli, T.; Ranzi, E.; Seiser, R; Seshadri, K. Proc. Combust. Inst. 2007,31 (1), 393. doi: 10.1016/j.proci.2006.08.008.
  • 8Yu, J.; Eser, S. Ind. Eng. Chem. Res. 1997,36 (3),585. doi: 10. 1021/ie9603934.
  • 9焦毅,李军,王静波,王健礼,朱权,陈耀强,李象远.物理化学学报,2011,27,1061.doi:10.3866/PKU.WHXB20110437.
  • 10Zeppieri, S. P.; Klotz, S. D.; Dryer, F. L. Proc. Combust. Inst. 2000,28 (2),1587. doi: 10.1016/S0082-0784(00)80556-1.

二级参考文献30

  • 1Paolo B, Aggarwal S, Puri I. An experimental and numerical investigation of n-heptane/air counterflow partially premixed flames and emission of NOx and PAH species [J]. Combustion and Flame, 2006, 145: 740-764.
  • 2Wang H, Frenklach M. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames[J]. Combus Flame, 1997, 110:173-221.
  • 3Turanyi T. Applications of sensitivity analysis to combustion chemistry [J]. Reliab Eng Syst Safe, 1997, 57:41 -48.
  • 4Griffiths J F. Reduced kinetic models and their application to pratical combustion systems[J]. Progress in Energy and Combustion Science, 1995, 21:25-107.
  • 5Xi J, Zhong B J. reduced kinetic mechanism of n-heptane oxidation in modeling polycyclic aromatic hydrocarbon formation in diesel combustion [J]. Chemical Engineering and Technology, 2006, 29(12) : 1461 - 1468.
  • 6Miller J A, Melius C F. Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels [J]. Combus Flame, 1992, 91:21-39.
  • 7Appel J, Bockhorn H, Frenklach M. Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons [J]. Combus Flame, 2000, 121: 122-136.
  • 8Tomlin, A. S.; Turanyi, T.; Pilling, M. J. Comprehensive Chemical Kinetics In Low Temperature Combustion and Autoignition, Eds.: Pilling, M. J.; Hancock, G., Elsevier, Amsterdam, 1997, p. 293.
  • 9Curran, H. J.; Gaffiari, E; Pitz, W. J.; Westbrook, C. K. Combust. Flame 2002, 129, 253.
  • 10Curran, H. J.; Gaffuri, P.; Pitz, W. J.; Westbrook, C. K. Combust. Flame 1998, 114, 149.

共引文献21

同被引文献35

  • 1Zeng, M. R.; Yuan, W. H.; Wang, Y. Z.; Zhou, W. X.; Zhang, L. D.; Qi, F.; Li, Y. Y. Combust. Flame 2014, 161, 1701. doi: 10.1016/j.combustflame.2014.01.002.
  • 2Hughes, K.; Meek, M. E.; Walker, M.; Beauchamp, R. 1,3- Butadiene: Human Health Aspects. In Concise International Chemical Assessment Document 30; WHO: Geneva, Switzerland, 2001; pp 1-73.
  • 3Vaughan, W. E. J.. Am. Chem. Soc 1932, 54, 3863. doi: 10.1021/ ja01349a008.
  • 4Kistiakovsky, G. B.; Ransom, W. W. J. Chem. Phys. 1939, 7, 725. doi: 10.1063/1.1750519.
  • 5Harkness, J. B.; Kistiakowski, G. B.; Meats, W. H. J. Chem. Phys. 1937, 5, 682. doi: 10.1063/1.1750100.
  • 6Granata, S.; Faravelli, T.; Ranzi, E.; Olten, N.; Senkan, S. Combust. Flame 2002, 131,273. doi: 10.1016/S0010-2180(02)00407-8.
  • 7Dagaut, E; Cathonnet, M. Combust. Sci. TechnoL 1998, 140, 225. doi: 10.1080/00102209808915773.
  • 8Hidaka, Y.; Higashihara, T.; Ninomiya, N.; Masaoka, H.; Nakamura, T.; Kawano, H. Int. J. Chem. Kinet. 1996, 28, 137.
  • 9Tsang, W. Chemical Activation Reactions in the Heptane Combustion Kinetics Database. In AIAA 44th Aerospace Sciences Meeting and Exihibt, American Institute of Aeronautics and Astronautics, Reno, Nevada, January 9-12, 2006.
  • 10Laskin, A.; Wang, H.; Law, C. K. Int. J. Chem. Kinet. 2000, 32, 589.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部