期刊文献+

侧链型磺化聚芳醚酮/磺化聚乙烯醇复合型直接甲醇燃料电池用质子交换膜 被引量:4

Sulfonated Poly(aryl ether ketone) on Side Chain/Sulfonated Poly(vinyl alcohol) Composite Proton Exchange Membrane for Direct Methanol Fuel Cells
下载PDF
导出
摘要 通过溶液共混法制备了不同磺化聚乙烯醇(SPVA)含量的侧链型磺化聚芳醚酮/磺化聚乙烯醇(S-SPAEK/SPVA)复合膜.应用红外光谱(FTIR)对复合膜进行了表征,扫描电镜(SEM)显示SPVA均匀分布在复合膜中.通过对复合膜的性能测试发现该系列复合膜具有良好的热性能、较高的吸水率和保水能力.SPVA中的羟基能有效地阻碍甲醇的透过,甲醇渗透系数从S-SPAEK/SPVA5复合膜的7.9×10-7cm2·s-1降低到S-SPAEK/SPVA30的1.3×10-7cm2·s-1,比S-SPAEK膜的11.5×10-7cm2·s-1降低了一个数量级.SPVA的引入增加了亲水基团数量,增加了复合膜的吸水和保水能力,有利于质子按照"Vehicle"机理和"Grotthuss"机理进行传递,柔软的SPVA链段与S-SPAEK侧链聚集成亲水相区,形成连续的质子传输通道,提高了复合膜的质子传导率.在25和80℃时,S-SPAEK/SPVA30复合膜的质子传导率分别达到了0.071和0.095S·cm-1.可见,S-SPAEK/SPVA复合膜有望在直接甲醇燃料电池中得到应用. Poly(aryl ether ketone)/sulfated poly(vinyl alcohol) (S-SPAEK/SPVA) composite membranes with different mass fractions of SPVA were prepared by solution casting using highly sulfonated side-chain- type sulfonated poly(aryl ether ketone) and sulfated poly(vinyl alcohol) as raw materials. Fourier transform infrared (FTIR) spectroscopy confirmed the structure of the S-SPAEK/SPVA composite membranes. Scanning electron microscope (SEM) images showed that SPVA was uniformly dispersed in an S-SPAEK polymer matrix. The uptake and swelling behavior, water retention capacity, methanol permeability, and proton conductivity of the composite membrane were investigated systematically. The performance testing of the composite membranes revealed that thermal stability and water absorption and retention capabilities were improved by introduction of SPVA. The methanol permeability of S-SPAEK/SPVA composite membranes decreased as the content of SPVA increased because the hydroxyl groups could effectively obstruct diffusion of methanol molecules. The methanol diffusion coefficients of the composite membranes decreased from 7.9 × 10-7 cm2 · s-1 for S-SPAEK/SPVA5 to 1.3 × 10-7 cm2 · s-1 for S-SPAEK/SPVA30; considerably lower than 11.5× 10^-7 cm^2×· s-1 for the pure S-SPAEK membrane. The water absorption and retention capabilities increased as the numbers of hydrophilic groups increased by introduction of SPVA. As a result, the proton conductivity of the composite membranes increased with increasing water absorption and retention capabilities according to the Vehicle and Grotthuss mechanisms. The flexible chain segment of SPVA interacted strongly with the pendant chain of S-SPAEK, aiding hydrophilic/ hydrophobic separation, and improving the proton conductivity of the composite membranes. The proton conductivity of the S-SPAEK/SPVA30 composite membrane reached 0.071 and 0.095 S.cm^-1 at 25 and 80 ℃ , respectively. These results show that S-SPAEK/SPVA composite membranes are promising for application in direct methanol fuel cells.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2013年第7期1515-1523,共9页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(51273024) 吉林省教育厅重点项目(2012103)资助~~
关键词 磺化聚芳醚酮 磺化聚乙烯醇 复合膜 质子传导率 甲醇渗透率 Sulfonated poly(aryl ether ketone) Sulfated poly(vinyl alcohol) Compositemembrane Proton conductivity Methanol permeability
  • 相关文献

参考文献27

  • 1Park, C. H.; Lee, C. H.; Guiver, M. D.; Lee, Y. M. Prog. Polym. Sci. 2011,36,1443. doi: 10.1016/j.progpolymsci.2011.06.001.
  • 2Hacl velioglu, E; Ozden, S.; Celik, S. U.; Yesilot, S.; Bozkurt, A. J. Mater. Chem. 2011,21,1020. doi: 10.1039/c0jm01466d.
  • 3Tripathi, B. P.; Mahendra, K.; Shahi, V. K. J. Membr. Sci. 2009, 327,145. doi: 10.1016/j.memsci.2008.11.014.
  • 4Zhou, S. H.; Kim, D. Electrochim. Acta 2012, 63, 238. doi: 10.1016/j.electacta.2011.12.098.
  • 5Chen, Y. L.; Meng, Y. Z.; Hay, A. S. Macromolecules 2005, 38, 3564. doi: 10.1021/ma047591o.
  • 6Fang, J. H.; Zhai, F. X; Guo, X. X.; Xu, H. J.; Okamoto, K.I.J. Mater. Chem. 2007, 17,1102. doi: 10.1039/b613561g.
  • 7Wang, G.; Xiao, G. Y.; Yan, D. Y. J. Membr. Sci. 2011,369,388. doi: 10.1016/j.memsci.2010.12.028.
  • 8Xu, T. W.; Wu, D.; Wu, L. Prog. Polym. Sci. 2008, 33, 894. doi: 10.1016/j.progpolymsci.2008.07.002.
  • 9邓会宁,王宇新.磷钨酸/磺化杂萘联苯聚醚酮复合质子交换膜的制备及其性能[J].物理化学学报,2007,23(8):1235-1240. 被引量:8
  • 10Wang, Z.; Ni, H. Z.; Zhao, C. J.; Li, X. E; Zhang, G., Shao, K.; Na, H. J. Membr. Sci. 2006,285,239. doi: 10.1016/j.memsci.2006.08.038.

二级参考文献11

共引文献14

同被引文献94

  • 1韩光鲁,陈哲,蔡立芳,张永辉,张学波,马环环,冯明煦.磺化来瓦希尔骨架(MIL-101(Cr)-SO3H)/磺化酚酞侧基聚芳醚砜杂化质子交换膜的制备及性能[J].复合材料学报,2020,37(3):504-511. 被引量:3
  • 2徐晶美,程海龙,白洪伟,任春丽,王哲,张会轩.用于直接甲醇燃料电池的侧链型磺化聚芳醚酮/聚乙烯醇交联膜的制备与性能研究[J].高分子学报,2013,23(8):999-1005. 被引量:9
  • 3Samms S R, Wasmus S,Savinell R F. Thermal Stability ofNafion* in Simulated Fuel Cell Environmcnts[J]. Journalof Electrochemical Society, 1996,143(5) : 1498-1504.
  • 4Wang J T, Wasmus S,Savinell R F. Real-time Mass Spec-trometric Study of the Methanol Crossover in a DirectMethanol Fuel Cell [J]. Journal of Electrochemical Socie-ty, 1996,143(4) : 1233-1239.
  • 5Hsiu-Li Lin,Shih-Hua Wang. Nafion/Poly( vinyl alcohol)Nano-fiber Composite and Nafion/Poly ( vinyl alcohol)Blend MembranevS for Direct Methanol Fuel Cells [J].Journal of Membrane Science.2014,452 : 253-262.
  • 6Ogoshi T.Kanai S, Fujinami S,et al. para-Bridged Sym-metrical Pillar[5] Arenes: Their Lewis Acid CatalyzedSynthesis and Host-guest Property [J]. Journal of the A-merican Chemical Society,2008,130 (15) : 5022-5023.
  • 7Park Young-Sun, Yamazaki Yohtaro. Low Methanol Per-meable and High Proton-conducting Nafion? /CalciumPhosphate Composite Membrane for DMFC [ J]. SolidState Ionics,2005,176: 1079-1089.
  • 8Chao Xue,Jing Zou,Zhaonan Sun,et al. Graphite Oxide/Functionalized Graphene Oxide and PolybenzimidazoleComposite Membranes for High Temperature Proton Ex-change Membrane Fuel Cells [J]. International Journal ofHydrogen Energy,2014,39 : 7931-7939.
  • 9Dimitrova P,Friedrich K A, Vogt B Stimming U. Trans-port Properties of Ionomer Composite Membranes for Di-rect Methanol Fuel Cells[J]. Journal of ElectroanalyticalChemistry,2002,532(1) : 75-83.
  • 10Gierke T D,Munn G E,Wilson F C. The Morphology inNafion? Perfluorinated Membrane Product, as Deter-mined by Wide and Small Angle X-ray Studies[J]. Jounalof Polymer Science, 1981,19( 11) : 1687-1704.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部