期刊文献+

多自由度系统自然激励技术的统一模型 被引量:3

Unified theoretical model of Natural Excitation Technique(NExT) for multi-degree-of-freedom structural systems
下载PDF
导出
摘要 结构运行状态下的模态参数提取是结构健康监测系统需要解决的关键问题之一。自然激励技术的提出为大型复杂工程结构运行状态下的模态参数提取提供了一条新的途径。原始自然激励技术给出了单输入白噪声激励下利用结构位移响应的互相关函数进行模态识别的理论模型,对于多输入情况则缺乏相应的理论模型。本文在单输入理论模型的基础上进一步发展了自然激励技术:推导了多输入独立白噪声激励下多自由度系统结构位移响应的互相关函数的解析公式,并分析了它与单输入情况下互相关函数之间的关系;基于此互相关函数定义了一个新函数,证明它含有结构各阶模态信息,可以表达为一系列衰减正弦函数之和,并且各个组分正弦函数的频率等于各阶模态的有阻尼固有圆频率;提出了以新函数为核心的同时适用于单输入和多输入情况的模态识别算法,建立了自然激励技术的统一模型。 Modal parameter identification (MPI) of structures subjected to highly uncertain natural excitations is crucial for structural health monitoring systems. The natural excitation technique (NEXT) had provided a new approach for MPI of large complicated structures using operating ambient excitations. The original NExT proposed a theoretical model of MPI using the displacement cross-correlation function of structures subjected to single white noise excitation, but there was no proper theoretical model for the multi-input case. The analytical formula of the displacement cross-correlation function is derived for multi-degree-of-freedom structural systems subjected to multiple independent white noise excitations. A new function is defined using this cross-correlation function. It is proved that the new function is the sums of decaying sinusoids which have the same damped frequencies and damping ratios as the modes of the system. Consequently, it has the same form as impulse response function and thus can be used in standard MPI algorithms. Based on the new function,a unified theoretical model of NExT is proposed, which can extract structural modal parameters using displacement responses for the case of either singleinput or multi-input.
作者 钟军军 董聪
出处 《计算力学学报》 CAS CSCD 北大核心 2013年第3期449-454,共6页 Chinese Journal of Computational Mechanics
关键词 自然激励技术 多输入 独立白噪声 位移响应 互相关函数 统一模型 natural excitation technique multi-input cross-correlation function unified model independent white noise displacement response
  • 相关文献

参考文献11

  • 1Farrar C R,Worden K. An introduction to structural health monitoring[-J]. Phil. Trans. R. Soc. A, 2007, 365(1851) :303-315.
  • 2Vistasp M K, Farhad A. Structural Health Monito- ring of Civil Infrastructure Systems [M]. Great Abington, Cambridge CB21 6AH, UK: Woodhead Publishing Limited and CRC Press LLC,2009.
  • 3James G H,Carne T G,Lauffer J P. The Natural Ex- citation Technique (NEXT) for Modal Parameter Ex- traction from Operating Wind Turbines [R]. Albu- querque, NM.- Sandia National Labratories, SAND92- 1666 UC-261,1993.
  • 4James G H,Carne T G,Lauffer J P. The natural exci- tation technique (NEXT) for modal parameter extrac- tion from operating structures [J]. The International Journal of Analytical and Experimental Modal Analysis, 1995,10(4) : 260-277.
  • 5James G H,Carne T G,Mayes R L. Modal Parameter Extraction from Large Operating Structures using Ambient Excitation [- R]. Albuquerque, NM.- Sandia National Labratories,SAND95-2972C, 1995.
  • 6James G H, Carne T G, Veers P S. Damping measure- ments using operational data[-J]. Journal of Solar Energy Engineering-Transactions of the ASME, 1996,118(3) : 190-193.
  • 7Carne T G,James G H. The inception of OMA in the development of modal testing technology for wind turbines[-J]. Mechanical Systems and Signal Proce- ssing,2010,24(5) :1213-1226.
  • 8Liu W,Gao W C,Sun Y. Application of modal identi- fication methods to spatial structure using field meas- urement data[-J]. Journal of Vibration and Acous- tics-Transactions of the ASME, 2009,131 (3) : 1-10.
  • 9Brownjohn J M W, Magalhaes F, Caetano E, et al. Ambient vibration re-testing and operational modal analysis of the Humber Bridge [ J ]. Engineering Structures, 2010,32(8) : 2003-2018.
  • 10杨鸥,刘洋,李惠,欧进萍.时变环境与损伤耦合下桥梁结构频率及阻尼比的统计分析[J].计算力学学报,2010,27(3):457-463. 被引量:9

二级参考文献10

  • 1Salawu O. Detection of structural damage through changes in frequency., a review [J ]. Engineering Structures, 1997 (19) : 718-723.
  • 2Doebling S, Farrar C,Prime M. A summary review of vibration-based damage identification methods[J]. Shock and Vibration Digest ,1998(30):91-105.
  • 3Alvandi A, Cremona C. Assessment of vibration- based damage identification techniques [J]. Journal of Sound and Vibration ,2006(292) :179-202.
  • 4Montalvao D, Maia N,Ribeiro A. A review of vibration-based structural health monitoring with special emphasis on composite materials[J]. Shock and Vibration Digest, 2006 (38) : 295-324.
  • 5Sohn H, Dzwonezyk M, Straser E G,et al. An experimental study of temperature effect on modal parameters of the Atamosa Canyon bridge [J ]. Earthquake Engineering and Structural Dynamics, 1999 (28):879-897.
  • 6Farrar C R,Doebling S W,Cornwell P J,et al. Variability of modal parameters measured on the Alamosa Canyon bridge[A]. Proceedings of the 15th international modal analysis conference[C], 1997 : 257-263.
  • 7Peeters B,De Roeck G. One-year monitoring of the Z24-Bridge: Environmental effects versus damage events [J ]. Earthquake Engineering and Structural Dynamics, 2001 (30) : 149-171.
  • 8Maeck J,Peeters B,De Roeck G. Damage identification on the Z24-bridge using vibration monitoring analysis[A]. Proceedings of European COSTF3 Conference on System Identification and Structural Health Monitoring[C], 2000 : 233-242.
  • 9James G H, Carne T G, Lauffer J P, et al. Modal testing using natural excitation[A]. Proc. , 10th Int. Modal Analysis Conf. [C]. San Diego,1992.
  • 10Juang J N, Pappa R S. An eigensystem realization algorithm for modal parameter identification and model reduction[J]. J Guid Control Dyn, 1985 (8) : 620-627.

共引文献8

同被引文献16

  • 1刘志红,仪垂杰,尹志宏.多变量AR建模方法在工作模态参数辨识中的应用[J].噪声与振动控制,2007,27(4):19-21. 被引量:2
  • 2Farrar C R, Worden K. An introduction to structural health monitoring[J]. Phil. Trans. R. Soc. A, 2007, 365(1851): 303 - 315.
  • 3Vistasp M K, Farhad A. Structural health monitoring of civil infrastructure systems [ M ]. Great Abington, Cambridge CB21 6AH, UK: Woodhead Publishing Limited and CRC Press LLC, 2009.
  • 4Kim B H, Stubbs N, Sikorsky C. Local damage detection using incomplete modal data [ C ]// Proceedings of the 20th International Modal Analysis Conference, Los Angeles California, 2002 : 435 -441.
  • 5Kim B H. Local damage detection using modal flexibility [ D ]. Texas : Texas A&M University, 2002.
  • 6James G H, Came T G, Lauffer J P. The natural excitation technique (NExT) for modal parameter extraction from operating wind turbines [ R]. SAND92 - 1666 UC - 261, Albuquerque, NM: Sandia National Laboratories, 1993.
  • 7James G H, Came T G, Lauffer J P. The natural excitation technique (NExT) for modal parameter extraction from operating structures [ J ]. The International Journal of Analytical and Experimental Modal Analysis, 1995, 10(4) : 260 - 277.
  • 8James G H, Came T G, Mayes R L. Modal parameter extraction from large operating structures using ambient excitation [ R]. SAND95- 2972C, Albuquerque, NM: Sandia National Laboratories, 1995.
  • 9Liu W, Gao W C, Sun Y. Application of modal identification methods to spatial structure using field measurement data[ J ]. Journal of Vibration and Acoustics-Transactions of the ASME, 2009, 131(3) : 1 -10.
  • 10Came T G, James G H. The inception of OMA in the development of modal testing technology for wind turbines [J ]. Mechanical Systems and Signal Processing, 2010, 24(5) : 1213 -1226.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部