期刊文献+

基于规则的分类数据离群挖掘方法研究 被引量:22

RULE-BASED OUTLIER MINING APPROACH IN CATEGORICAL DATA
下载PDF
导出
摘要 离群数据的挖掘 (outlier mining,简称离群挖掘 )是数据挖掘的重要内容 ,现有的离群数据挖掘算法大多对分类数据 (categorical data)缺乏有效的处理 ,提出了基于规则的分类数据离群挖掘方法 ,采用多层最大离群支持度 maxsup,搜索离群规则 ,有效地解决了这一问题 ,用这一方法对医学流行病数据进行了各种实验 ,分析了该方法的适用范围、性能 ,验证了方法正确性 ;另外 ,实验表明 ,经过离散化后 ,基于规则的分类数据离群挖掘算法对连续性属性的数据也是有效的 . Outlier mining is an important part of data mining. Existing outlier mining approaches lack valid processing for categorical data. A kind of rule based outlier mining approach in categorical data is introduced, which can solve the problem effectively. Some experiments have been done on epidemiology data in this method. The range of application and performance of this approach are analyzed, and it is found that if rule based outlier mining approach in categorical data is applicable in other continuous data after being discreted, good results can also be obtained.
出处 《计算机研究与发展》 EI CSCD 北大核心 2000年第9期1094-1100,共7页 Journal of Computer Research and Development
基金 国家自然科学基金资助!(项目编号 69675 0 16)
关键词 离散数据 离群挖掘 分类数据 流行病数据库 医学 rule, outlier, outlier mining, categorical data
  • 相关文献

参考文献9

  • 11,Knorr E, Ng R. Algorithms for mining distance-based outliers in large datasets. In: Proc of the 24th VLDB Conf. New York, 1998. 392~403
  • 22,Barnett V, Lewis T. Outliers in Statistical Data. New York: John Wiley & Sons,1994
  • 33,Knorr E, Ng R. A unified approach for mining outliers: Properties and computation. In: Proc of 1997 Int'l Conf on Knowledge Discovery and Data Mining( KDD'97). Newport Beach, California, 1997. 219~222
  • 44,Knorr E, Ng R. Finding intensional knowledge of distance-based. In: P roc of the 25th VLDB Conf. Edinburgh, Scotland, 1999. 211~222
  • 55,Breuning M, Kriegel H, Ng R. OPTICS-OF: Identifying local outliers. I n: Proc of the 3rd European Conf on Principles and Practice of Knowledge Discove ry in Databases(PKDD'99). Prague, 1999. 262~270
  • 66,Arning A, Agrawal R, Raghavan P. A linear method for deviation in larg e database. In: Proc of Int'l Conf on Data Mining and Knowledge Discovery(KDD'9 6). Portland, 1996. 164~169
  • 77,Guha S, Rastogi R, Shim K. Rock: A robust clustering algorithm for cat egorical attributes. In: Proc of 1999 Int'l Conf on Data Engineering. Sydney, 19 99. 512~521
  • 88,Agrawal R, Srikant R. Fast algorithms for mining association rules. I n: Proc of 1994 Int'l Conf on Very Large Data Bases (VLDB94). Santiage, Chile, 1 994. 487~499
  • 99,Agrawal R, Imielinski T, Swami A. Mining association rules between set s of items in large databases. In: Proc of ACM SIGMOD Conf on Management of Data (AIGMOD'93). Washington, 1993. 207~216

同被引文献144

引证文献22

二级引证文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部