期刊文献+

基于三维几何视觉重要性的纹理图像选择压缩算法 被引量:1

Selective Compression for Texture Map Image Based on Visual Importance from 3D Geometry
下载PDF
导出
摘要 不同于传统二维图像,映射到三维模型上的纹理图像隐式包含了三维几何视觉信息.然而,目前已有的纹理图像压缩方法并未考虑此特性.本文提出了一种与三维模型几何视觉特性相关的纹理图像选择压缩算法.首先给出一种结合纹理图像的显著性及其纹理走样的视觉重要性图构建方法,将纹理图像划分为具有不同优先级别区域.之后,利用提出的选择压缩方法对它们进行不同比例压缩.实验结果表明当选择本压缩算法时,纹理化三维模型能够获取较好的视觉效果. Different from common 2D images, when a texture map image is project to a 3D model in the 3D space, it also implicitly associates with certain 3D geometry information. However, existing common texture map image compression methods do not take this into account. In this paper, we present a visual importance driven selective compression method for texture map image. Firstly, a visual important map construction method is presented, which takes not only the saliency information of the texture image but also the distortion of texture mapping into account. With this visual importance map, the texture map image is divided into several distinct areas. Then, the selective compression method is presented to compress these areas with a varying compression ratio. Experimental results show that the textured 3D model can obtain a better visual result when adopting our method.
出处 《自动化学报》 EI CSCD 北大核心 2013年第6期826-833,共8页 Acta Automatica Sinica
基金 浙江省杰出青年自然科学基金(LR12F02001) 国家自然科学基金(61170214 61170098) 浙江省自然科学基金(Z1101340) 浙江省教育厅科研重点项目(Z201018041) 浙江省科技计划项目(2012C21028)资助~~
关键词 几何相关 视觉重要性 感兴趣区域 纹理压缩 Geometry dependent visual important region of interest (ROI) texture map compression
  • 相关文献

参考文献19

  • 1Iourcha K, Nayak K, Zhou H. System and Method for Fixed- Rate Block-Based Image Compression with Inferred Pixel Values, U.S. Patent 5956431, September 1999.
  • 2Strom J, AkenineMo11er T. iPACKMAN: high-quality, low- complexity texture compression for mobile phones. In: Pro- ceedings of the 2005 ACM SigGraph/EuroGraphies Confer- ence on Graphics Hardware. New York, USA: ACM, 2005. 63-70.
  • 3Fenney S. Texture compression using low-frequency sig- nal modulation. In: Proceedings of tile 2003 ACM Sig- Graph/EuroGraphics Conference on Graphics Hardware. San Diego, California: ACM, 2003. 84-91.
  • 4Said A, Pearlman W A. A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 1996, 6(3): 243-250.
  • 5Kalyanpur A, Neklesa V P, Taylor C R, Daftary A R, Brink J A. Evaluation of JPEG and wavelet compression of body CT images for direct digital teleradiologic transmission. Ra- diology, 2000, 217(3): 772-779.
  • 6Taubman D S, Marcellin M W. Image Compression Fun- damentals, Standards, and Practice. Boston: Kluwer Aca- demic Publishers. 2001.
  • 7Sanchez V, Basu A, Mandal M K. Prioritized region of in- terest coding in JPEG2000. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(9): 1149-1155.
  • 8孙超,姜守达,王建峰.一种基于EBCOT的感兴趣区图像编码算法[J].自动化学报,2010,36(5):650-654. 被引量:4
  • 9Guo C L, Zhang L M. A novel multiresolution spatiotem- poral saliency detection model and its applications in image and video compression. IEEE Transactions on hnage Pro- cessing, 2010, 19(1): 185-198.
  • 10Itti L. Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Transac- tions on Image Processing, 2004, 13(10): 1304-1318.

二级参考文献1

共引文献3

同被引文献15

  • 1ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis [J}. tEEE Transaction on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
  • 2HAREL J, KOCH C, PERONA P. Graph-based visual saliency[A}. Advances in Neural Information Processing Systems[C}. Vancou- ver, B.C., Canada, 2006. 545-552.
  • 3ACHANTA R, ESTRADA F, WILS P et al. Salient Region Detec- tion and Segmentation Computer Vision Systems[M}. Springer Berlin Heidelberg, 2008: 66-75.
  • 4GOFERMAN S, ZELNIK-MANOR L, TAL A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915-1926.
  • 5HOU X, ZHANG L. Saliency detection: a spectral residual ap- proach[A]. Computer Vision and Pattern Recognition (CVPR 2007)[C]. Los Angeles, USA, 2007. 1-8.
  • 6ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[A]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009)[C]. Miami Beach, USA, 2009. 1597-1604.
  • 7ACHANTA R, SUSSTRUNK S. Saliency detection using maxi- mum symmetric surround[A]. IEEE International Conference on Image Processing (ICIP, 2010)[C]. Hongkong, China, 2010. 2653-2656.
  • 8NGAU C W H, ANG L M, SENG K P. Bottom-up visual saliency map using wavelet transform domain[A]. Computer Science and Information Technology (ICCSIT)[C]. Chengdu, China, 2010. 692-695.
  • 9IMAMOGLU N, LIN W, FANG Y. A saliency detection model using low-level features based on wavelet transform[J]. IEEE Transactions on Multimedia, 2013, 15(1): 96-105.
  • 10NADENAU M. Integration of Human Color Vision Models into High Quality Image Compression[D]. Rheinisch-Westfilische Technische Hochschule, Aachen, 2000.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部