期刊文献+

多特征融合的低景深图像前景提取算法 被引量:6

Foreground Extraction from Low Depth-of-field Images Based on Colour-texture and HOS Features
下载PDF
导出
摘要 针对低景深(Low depth-of-field,DOF)图像,提出了一种融合纹理、颜色和高阶统计量(Higher-order statistics,HOS)特征的聚焦前景提取方法.首先,根据相似性最大化原则,通过迭代获得纹理和颜色特征的优化权重,实现低景深图像的区域分割.然后,根据优化权重值计算颜色空间上的加权HOS值,并结合区域归属前景的划分策略,实现低景深图像的前景提取.实验结果表明,该算法可以同时取得较高的主观和客观评价效果. This paper presents a new algorithm for extracting foreground objects from low depth-of-field (DOF) images using texture, color and high-order statistics (HOS) features. Firstly, an algorithm with automatic weight optimization is designed to segment DOF images according to the principle of maximum similarity. The foreground of DOF images is then extracted based on the weighted HOS and a strategy for foreground region classification. Simulation results demonstrate that the proposed algorithm achieves satisfactory result both subjectively and objectively.
出处 《自动化学报》 EI CSCD 北大核心 2013年第6期846-851,共6页 Acta Automatica Sinica
基金 国家自然科学基金(31201129) 高等学校博士点基金(20120171110037) 广东省自然科学基金重点项目(S2012020011114) 广东省科技计划项目(2011B-020308009) 公益性行业(农业)科研专项经费项目(200903023-01)资助~~
关键词 前景提取 低景深图像 高阶统计量 权重优化 Foreground extraction low depth-of-field (DOF) images high-order statistics (HOS) weight optimization
  • 相关文献

参考文献13

  • 1Kim C. Segmenting a low-depth-of-field image using mor- phological filters and region merging. IEEE Transactions on Image Processing, 2005, 14(10): 1503-1511.
  • 2Ko J, Kim M, Kim C. 2D-to-3D stereoscopic conversion: depth-map estimation in a 2D single-view image. In: Pro- ceedings of SHE. 2007, 6696: 66962A.
  • 3穆亚东,周秉锋.基于颜色和纹理信息的快速前景提取方法[J].计算机学报,2009,32(11):2252-2259. 被引量:9
  • 4Li H L, Ngan K N. Learning to extract focused objects from low DOF images. IEEE Transactions on Circuits and Sys- tems for Video Technology, 2011, 21(11): 1571-1580.
  • 5Shi L L, Funt B. Quaternion color texture segmenta- tion. Computer Vision and Image Understanding, 2007, 107(1-2): 88-96.
  • 6Chen J Q, Pappas T N, Mojsilovic A, Rogowitz B E. Adaptive perceptual color-texture image segmentation. IEEE Transactions on Image Processing, 2005, 14(10): 1524-1536.
  • 7魏巍,申铉京,千庆姬.工业检测图像灰度波动变换自适应阈值分割算法[J].自动化学报,2011,37(8):944-953. 被引量:20
  • 8范九伦,雷博.灰度图像最小误差阈值分割法的二维推广[J].自动化学报,2009,35(4):386-393. 被引量:48
  • 9徐剑,丁晓青,王生进,吴佑寿.一种融合局部纹理和颜色信息的背景减除方法[J].自动化学报,2009,35(9):1145-1150. 被引量:19
  • 10Deng Y N, Manjunath B S. Unsupervised segmentation of color-texture regions in images and video. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2001, 23(8): 800-810.

二级参考文献56

共引文献89

同被引文献64

引证文献6

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部