摘要
针对低景深(Low depth-of-field,DOF)图像,提出了一种融合纹理、颜色和高阶统计量(Higher-order statistics,HOS)特征的聚焦前景提取方法.首先,根据相似性最大化原则,通过迭代获得纹理和颜色特征的优化权重,实现低景深图像的区域分割.然后,根据优化权重值计算颜色空间上的加权HOS值,并结合区域归属前景的划分策略,实现低景深图像的前景提取.实验结果表明,该算法可以同时取得较高的主观和客观评价效果.
This paper presents a new algorithm for extracting foreground objects from low depth-of-field (DOF) images using texture, color and high-order statistics (HOS) features. Firstly, an algorithm with automatic weight optimization is designed to segment DOF images according to the principle of maximum similarity. The foreground of DOF images is then extracted based on the weighted HOS and a strategy for foreground region classification. Simulation results demonstrate that the proposed algorithm achieves satisfactory result both subjectively and objectively.
出处
《自动化学报》
EI
CSCD
北大核心
2013年第6期846-851,共6页
Acta Automatica Sinica
基金
国家自然科学基金(31201129)
高等学校博士点基金(20120171110037)
广东省自然科学基金重点项目(S2012020011114)
广东省科技计划项目(2011B-020308009)
公益性行业(农业)科研专项经费项目(200903023-01)资助~~
关键词
前景提取
低景深图像
高阶统计量
权重优化
Foreground extraction
low depth-of-field (DOF) images
high-order statistics (HOS)
weight optimization