期刊文献+

马铃薯C-8,7甾醇异构酶基因原核表达载体的构建和表达

Construction of prokaryotic expression vectors for StSI1 and its induced expression
下载PDF
导出
摘要 为研究甾醇异构酶的功能以及制备抗体,分别构建了马铃薯C-8,7甾醇异构酶基因StSI1携带和去除信号肽序列的原核表达载体pGEX-StSI1b和pGEX-StSI1c,并在大肠杆菌BL21(DE3)工程菌株中优化了融合蛋白GST-StSI1b和GST-StSI1c的诱导表达条件.结果表明,在0.1,0.5,1.0 mmol.L-1的IPTG诱导下,2种融合蛋白GST-StSI1b和GST-StSI1c均能有效表达,并以1.0 mmol.L-1IPTG诱导的效果最好;从诱导表达的时间来看,3种浓度IPTG诱导3 h后融合蛋白均开始表达,且表达量随着诱导时间的延长而逐渐增加,但在诱导9 h后的表达量增加幅度不大,因此确定诱导融合蛋白GST-pStSI1表达的最佳IPTG浓度为1.0 mmol.L-1,诱导时间为9 h. Two prokaryotic expression vectors pGEX-StSIlb and pGEX-StSI1 c for the potato StSI1 (C- 8,7 sterol isomerase) gene cDNA StSH both with and without signal peptide were constructed and the induced expression conditions for the fusion protein GST-StSI1 b and GST-StSI1 c were optimized in the engineered Escherichia coli BL21 (DE3). The results showed that the fused GST-StSIlb and GST- StSIlc proteins could be effectively expressed under different concentrations of IPTG, including 0.1, 0.5 and 1.0 mmol · L^-1, and the most suitable concentration of IPTG was 1.0 mmol · L^-1. As to the induction time, the fusion protein began to express after 3 h of induction under the 3 different IPTG concentrations, and its expression abundance increased along with the induction time and reached to the highest point at the 9 h of induction. In general, the most suitable induction condition for the fu- sion protein was 9 h induction under 1.0 mmol · L^-1 IPTG.
出处 《河南农业大学学报》 CAS CSCD 北大核心 2013年第3期268-271,288,共5页 Journal of Henan Agricultural University
基金 河南省科技攻关项目(30200302)
关键词 马铃薯 甾醇异构酶 原核表达 potato StSI1 prokaryotic expression
  • 相关文献

参考文献15

  • 1HARTMANN M A. Plant sterols and the membrane en-vironment[J]. Trends Plant Sci, 1998, 3: 170 - 175.
  • 2BISHOP GJ, KONCZ C. Brassinosteroids and plant steroid hormone signaling[J]. Plant Cell, 2002, 14: 97 - 110.
  • 3MOEBIUS F F, BERMOSER K, REITER RJ, et al. Yeast sterol C. -C, isomerase: identification and charac-terization of a high-affinity binding site for enzyme inhibi-tors[J]. Biochemistry, 1996,51(35): 16871-16878.
  • 4SOUTER M, TOPPINGJ, PULLEN M, et al. Hydra mutants of arabidopsis are defective in dterol profiles and auxin and ethylene signaling[J]. The Plant Cell, 2002, 14: 10 17 - 1031.
  • 5ARTHINGTON B A, HOSKINSJ, SKATRUD P L et al. Nucleotide sequence of the gene encoding yeast C - 8 ste-rol isomerase[J]. Gene, 1991, 107 (I): 173 - 174.
  • 6SILVE S, DUPUY P, LABIT-LABOUTEILLER C, et al. Emopamilbinding protein, a mammalian protein that binds a series of structurally diverse neuroprotective a-gents, exhibits .i8 - .i7 sterol isomerase activity in yeast[J].J BioI Chern, 1996, 271: 22434 - 22440.
  • 7KEONJ P,JAMES C S, COURT S, et al. Isolation of the ERG2 gene, encoding sterol delta 8 delta 7 isomer-ase, from the rice blast fungus Magnaporthe grisea and its expression in the maize smut pathogen Ustilago may-dis[J]. CUIT Genet, 1994,25(6): 531 -537.
  • 8ANDREW M B, RAYMOND S B, CAROLINE SJ , et al. Isolation of the ERG2 Gene, encoding .i8 -->.i7 sterol isomerase, from the maize smut pathogen Ustilago maydis[J]. Experimental Mycology, 1994, 18: 87 - 92.
  • 9MARKUS H, FABIAN F M, FLORIAN W, et al. Phe-nylalkylamine Ca2 + antagonist binding protein. Molecu-lar cloning, tissue distribution, and heterologous expres-sion[J].Journal of Biological Chemistry, 1995, 270: 7551 -7557.
  • 10GREBENOK RJ, OHNMEISS T E, YAMAMOTO A, et al. Isolation and characterization of an arabidopsis thaliana C-8, 7 sterol isomerase: functional and structur-al similarities to mammalian C -8 ,7 sterol isomerase/ emo-pamil-binding protein[J]. Plant Mol BioI, 1998, 38 ( 5 ) : 807 - 815.

二级参考文献21

  • 1Andrew M Bailey, Raymond S Burden, Caroline S James, John P R Keon, Rebecca Croxen, Martin Bard, John A Hargreaves. 1994. Isolation of the ERG2 gene, encoding △8→△7 sterol isomerase, from the maize smut pathogen Ustilago maydis. Experimental Mycology, 18:87 -92.
  • 2Arthington B A, Hoskins J, Skatrud P L, Bard M. 1991. Nucleotide sequence of the gene encoding yeast C-8 sterol isomerase. Gene, 107 ( 1 ) : 173 - 174.
  • 3Bendtsen J D, Nielsen H, Heijne G, Brunak S. 2004. Improved prediction of signal peptides: Signal P 3.0. J Mol Biol, 340:783 -795.
  • 4Bishop G J, Koncz C. 2002. Brassinosteroids and plant steroid hormone signaling. Plant Cell, 14:97 -110.
  • 5Bushway R J, Ponnampalam R. 1981. α-chaconine and α-solanine content of potato products and their stability during several modes of cooking. Journal of Agricultural and Food Chemistry, 29 (4) : 814 -817.
  • 6FAO/WHO. 1999. Summary of evaluations performed by the joint FAO/WHO expert committee on food additives (JECFA). Washington: ILSI- Press.
  • 7Grebenok R J, Ohnmeiss T E, Yamamoto A, Huntley E D, Galbraith D W, Della Penna D. 1998. Isolation and characterization of an Arabidopsis thaliana C-8, 7 sterol isomerase: Functional and structural similarities to mammalian C-8, 7 sterol isomerase/emopamil-binding protein. Plant Mol Biol, 38 (5) : 807 -815.
  • 8Hartmann M A. 1998. Plant sterols and the membrane environment. Trends Plant Sci. 3 : 170- 175.
  • 9Keon J P, James C S, Court S, Baden-Daintree C, Bailey A M, Burden R S, Bard M, Hargreaves J A. 1994. Isolation of the ERG2 gene, encoding sterol delta 8→delta 7 isomerase, from the rice blast fungus Magnaporthe grisea and its expression in the maize smut pathogen Ustilago maydis. Curr Genet, 25 (6) : 531 -537.
  • 10Keskitalo M, Vasara T, Pietila L. 1996. Potato glycoalkaloids: A burden or a blessing? Crit Rev Plant Sci, 15:1 -20.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部