期刊文献+

光纤陀螺常值漂移误差自补偿方法 被引量:4

Error Auto-compensation of Constant Drift of FOG
下载PDF
导出
摘要 光纤捷联惯导系统(SINS)中,光纤陀螺常值漂移是导致SINS导航误差的主要因素。阐述了单轴旋转误差自补偿技术的基本原理,针对传统单轴旋转调制不能补偿与旋转轴平行方向上的陀螺常值漂移误差,给出了一种改进的单轴旋转式惯导系统误差自动补偿方法。将惯性测量组件(Inertial Measurement Unit,IMU)倾斜安装,不与旋转轴正交或重合,理论分析了这种配置方案可以有效地补偿一般单轴旋转方案中不能补偿的光纤陀螺常值漂移误差,从而大大提高系统的导航精度,最后给出了仿真结果。仿真结果表明,改进的单轴旋转方案能够明显的提高惯导系统的精度。 Constant drift of FOG is one of the main factors of navigation error in FOG strapdown inertial navigation system(SINS).The auto-compensation principle of the single-axial rotation inertial navigation system was introduced.An auto-compensation of inertial navigation system based on improved single-axis rotation was proposed,aiming at the issue that gyro constant drift error,parallelism with the rotation axis,can not compensate by traditional single-axis rotation.Inertial Measurement Unit(IMU) was tiltly mounted,e.g.neither perpendicularly,nor coaxially,with the rotation axis.Analysis and derivations show that this angle arrangement of IMU can restrain the expansion of the system errors caused by inertial units.Simulations demonstrate the consistence of the theoretical analysis and the system performances.The simulation results show that the improved single-axis rotation could improve the inertial navigation system precision significantly.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第6期1161-1165,共5页 Journal of System Simulation
基金 新一代高精度陀螺仪及系统的引进(2010DFR80140)
关键词 捷联惯导系统 陀螺常值漂移 单轴旋转 自动补偿 倾斜安装 strapdown inertial navigation system gyro constant drift single-axial rotation auto-compensation tiltly mounted
  • 相关文献

参考文献10

二级参考文献79

共引文献211

同被引文献44

  • 1徐博,郝燕玲.航行状态下罗经回路初始对准方法误差分析[J].辽宁工程技术大学学报(自然科学版),2012,31(1):46-49. 被引量:2
  • 2Kyung Jun Han,Chang Ky Sung,Myeong-Jong Yu.Improved calibrationalgorithm for SDINS considering Body-Frame drift[C]//AmericanInstitute of Aeronautics and Astronautics.AIAA Guidance,Navigation,and Control Conference.Chicag:IUinois,2009:l-13.
  • 3YUAN WQ,WU Z H,SUI Y X. Six degrees of freedom vi-bration transmissibility measurement of flexural opto-me-chanical structures with 3-axis acceleration sensors [ J ]. Pre-cision Engineering ,2014,38 (3 ) :561-568.
  • 4CHANG H L,ZHOU P W,XIE ZH J,et al. Theoreticalmodeling for a six-DOF vortex inertial sensor and experi-mental verification [ J ]. Journal of MicroelectromechanicalSystems,2013,22(5) : 1100-1108.
  • 5PAN J Y,ZHANG CH X, CAI Q ZH. An accurate calibra-tion method for accelerometer nonlinear scale factor on alow-cost three-axis turntable [ J ]. Measurement Scienceand Technology,2014,25(2) :1-7.
  • 6LV H Y, QIN L, LIU J. Principle research on a singlemass six-degree-of-freedom accelerometer with six groupsof piezoelectric sensing elements[ J] . IEEE Sensors Jour-nal,2015 ,15 (6) :3301-3310.
  • 7LIU W, ZHANG Y J, YANG X F. Pedestrian navigationusing inertial sensors and altitude error correction [ J ] .Sensor Review,2015 ,35( 1 ) :68-75.
  • 8XIA Y H,LI CH G, YOU J J,et al. Influences analysis ofconfigurations on the performance of parallel type six-axisaccelerometers [ J ]. Transactions of FAMENA, 2013,37(2) :67-86.
  • 9LU X,XU SH F. Rounding errors of partial derivatives ofsimple eigenvalues of the quadratic eigenvalue problem[ J].Journal of Computational and Applied Mathematics,2015,282:268-277.
  • 10杨晓霞,黄一.激光捷联惯导系统的一种系统级标定方法[J].中国惯性技术学报,2008,16(1):1-7. 被引量:38

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部