期刊文献+

基于压缩感知的认知无线网络协作频谱感知技术 被引量:3

Novel Cooperative Spectrum Sensing Method Based on Compressed Sensing for Cognitive Radio Networks
下载PDF
导出
摘要 针对传统频谱感知算法受A/D器件物理瓶颈,硬件计算能力等限制难以实现宽频段授权用户实时检测的问题,将压缩感知技术应用于宽带频谱感知,建立了一个基于Xampling前端的新型协作频谱感知模型,在此模型基础上提出一种基于认知用户分组,组内利用压缩感知技术进行信息融合,组间对各组检测结果进行判决融合,两者结合实现授权用户检测的新算法,并给出了认知用户的分组原则。与传统宽带频谱感知算法相比,该方法无需高速A/D,也不需要恢复原始信号,可有效降低宽带频谱感知的硬件复杂度,缩短频谱感知时间,仿真结果证实了新算法的有效性。 Limited by the physical bottleneck of A/D device,hardware computing power and other restrictions,traditional spectrum sensing methods can hardly realize the real-time detection of the licensed users in wide-band spectrum.To overcome this problem,compressed sensing was invited into wide-band spectrum sensing,and a new collaborative wide-band spectrum sensing model was established based on Xampling.A new algorithm was proposed based on cognitive user groups,in which information fusion based on compressed sensing and decision fusion were combined.Compared with the traditional sensing algorithms,this method needs either high-speed A/D device or reconstruction of the original signal,which can effectively reduce the complexity of wide-band spectrum sensing hardware and the sensing time.Finally,simulation results show the validity of the proposed scheme.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第6期1247-1251,共5页 Journal of System Simulation
关键词 认知无线电 认知无线网络 频谱感知 压缩感知 cognitive radio cognitive radio networks spectrum sensing compressed sensing
  • 相关文献

参考文献14

  • 1T Yucek, H Arslan. A survey of spectrum sensing algorithms forcognitive radio applications [J]. IEEE Communications Surveys &Tutorials (S1553-877X), 2009,11(1): 116-130.
  • 2Zeng Yong-hong, Liang Ying-chang, Hoang Anh Tuan. A review onspectrum sensing for cognitive radio: challenges and solutions [J].EURASIP Journal on Advances in Signal Processing - Special issueon advanced signal processing for cognitive radio networks archive(S1687-6172), 2010,2010(1): 1-15.
  • 3Xu Gang, Zhu Yi-wen, Han Meng. Broadband cognitive radiotransmission based on sub-channel sensing and NC-OFDM [J].International Journal of Communication Networks and InformationSecurity (S2076-0930), 2010,2(2): 98-102.
  • 4Tian Zhi, G B Giannakis. Compressed Sensing for WidebandCognitive Radios [C]// IEEE International Conference on Acoustics,Speech and Signal Processing. USA: IEEE, 2007,4: 1357-1360.
  • 5Tian Zhi. Compressed Wideband Sensing in Cooperative CognitiveRadio Networks [C]// IEEE Global TelecommunicationsConference. USA: IEEE, 2008: 1-5.
  • 6T T Le, Y K Hyung. Projected Barzilai-Borwein Methods Appliedto Distributed Compressive Spectrum Sensing [C]// IEEESymposium on New Frontiers in Dynamic Spectrum, 2010. USA:IEEE, 2010: 1-7.
  • 7T T Le, Y K Hyung. A Novel and Efficient Mixed-SignalCompressed Sensing for Wide-Band Cognitive Radio [C]//International Forum on Strategic Technology (IFOST), Ulsan,Korea. USA: IEEE, 2010: 27-32.
  • 8E J. Candes, M B Wakin. An Introduction to Compressive Sampling[J]. IEEE Signal Processing Magazine (S1053-5888),2008, 25(2):21-30.
  • 9J A Tropp,M B Wakin, M F Duarte, et al. R Random Filters forCompressive Sampling and Reconstruction [C]// IEEE InternationalConference on Acoustics, Speech and Signal Processing. USA:IEEE, 2006, 3,III.
  • 10O Taheri, S A Vorobyov. Segmented Compressed Sampling forAnalog to Information Conversion: Method and PerformanceAnalysis [J], IEEE Transactions on Signal Processing(S1053-587X), 2011,59(2): 554-572.

同被引文献31

  • 1苏忠,林闯,封富君,任丰原.无线传感器网络密钥管理的方案和协议[J].软件学报,2007,18(5):1218-1231. 被引量:111
  • 2Donoho D L. Compressed Sensing [ J ]. IEEE Transactions on informa- tion theory ,2006,52(4) :1289 - 1306.
  • 3Jia Meng,Wotao Yin, Husheng Li, et al. Collaborative spectrum sensing from sparse observations using matrix completion for cognitive radio networks[ R]. IEEE International Conference on Acoustics Speech and Signal Processing,2010.
  • 4Guo D, Liu Z, Qu X B, et al. Sparsity-Based online missing data recov- ery using overcomplete dictionary[ R]. IEEE Sensors Journal, 2012.
  • 5Chen S S,Donoho D L,Saunders M A. Atomic Decomposition by Basis Pursuit[ J 1. SIAM Journal of Scientific Computing, 1998,20 ( 1 ) : 33 -61.
  • 6Figueiredo M, Nowak R, Wright S. Gradient projection for sparse recon- strnction:application to compressed sensing and other in-verse prob- lems[ J]. IEEE Journal of Selected Topics in Signal Processing,2007,1 (4) :586 -597.
  • 7Danbechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [ J]. Comm Pure Appl Math,2004,57 (22) :1413 - 1457.
  • 8Tropp J, Gilbert A. Signal recovery from partial information via orthogo- nal matching pursuit [ J ]. IEEE Trans on Inform Theory, 2007,53 (12) :4655 -4666.
  • 9Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction[ C]//Intemational Symposium on Turbo Codes and Re- lated Topics,2008:402 - 407.
  • 10Needell D, Vershynin R. Signal recovery from inaccurate and in-com- plete measurements via regularized orthogonal matching pursuit [ j ]. Found Comput Math,2009,9 (3) :317 - 334.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部