摘要
The distributions of partial pressure of carbon dioxide (pCO2) in the surface waters of the Changjiang River Estuary and adjacent Hangzhou Bay were examined in the summer of 2010. Surface water pCO2 ranged from 751-2 095/zatm (1 atm=101 325 Pa) in the inner estuary, 177-1 036/zatm in the outer estuary, and 498-1 166 μatm in Hangzhou Bay. Overall, surface pCO2 behaved conservatively during the estuary mixing. In the inner estuary, surface pCO2 was relatively high due to urbanized pollution and a high respiration rate. The lowest pCO2 was observed in the outer estuary, which was apparently induced by a phytoplankton bloom because the dissolved oxygen and chlorophyll a were very high. The Changjiang River Estuary was a significant source of atmospheric CO2 and the degassing fluxes were estimated as 0-230 mmol/(m2.d) [61 mmol/(m2.d) on average] in the inner estuary. In contrast, the outer estuary acted as a CO2 sink.
The distributions of partial pressure of carbon dioxide (pCO2) in the surface waters of the Changjiang River Estuary and adjacent Hangzhou Bay were examined in the summer of 2010. Surface water pCO2 ranged from 751-2 095/zatm (1 atm=101 325 Pa) in the inner estuary, 177-1 036/zatm in the outer estuary, and 498-1 166 μatm in Hangzhou Bay. Overall, surface pCO2 behaved conservatively during the estuary mixing. In the inner estuary, surface pCO2 was relatively high due to urbanized pollution and a high respiration rate. The lowest pCO2 was observed in the outer estuary, which was apparently induced by a phytoplankton bloom because the dissolved oxygen and chlorophyll a were very high. The Changjiang River Estuary was a significant source of atmospheric CO2 and the degassing fluxes were estimated as 0-230 mmol/(m2.d) [61 mmol/(m2.d) on average] in the inner estuary. In contrast, the outer estuary acted as a CO2 sink.
基金
The Marine Public Welfare Project of China under contract Nos200805029,200905012,200905025,and 201005034
the Scientific Research Fund of the Second Institute of Oceanography,SOA under contract Nos JG0821 and JG1021