期刊文献+

弱磁场下三阱光学超晶格中自旋为1的超冷原子特性研究

Ultracold spin-1 atoms in three-well optical superlattice under a weak magnetic field
原文传递
导出
摘要 双阱光学超晶格中的超冷原子是近期冷原子物理领域的研究热点.本文推广提出了实现三阱光学超晶格的方案,并采用精确对角化的方法分别研究了弱磁场下对称三阱光学超晶格中铁磁性和反铁磁性的自旋为1的原子系统的基态,发现二者的相图很不相同:反铁磁性原子对应的相图中没有沿磁场方向总自旋磁量子数为±2的基态,而铁磁性原子对应的相图中可能有.在负的二次塞曼能量区域,铁磁性原子的相图中只有完全极化态.分析了可控参数影响基态的物理本质.由于这些量子自旋态可以通过调节外磁场和光势垒的高度非常简便而精确地控制,适合用来研究自旋纠缠. Ultracold atoms trapped in an optical lattice of double-well potential, the so-called optical superlattice, have received much attention in the field of cold atoms. A protocol generalized to three-well optical superlattice is suggested in this paper. The ground- state diagrams of ultracold spin-1 atoms trapped in a symmetric three-well optical superlattice in a weak magnetic field are studied based on the exact diagonalization. It is shown that the ground-state diagrams are remarkably different for the ferromagnetic and antiferromagnetic atoms. There does not exist the type of ground state for the antiferromagnetic interaction atoms, where the magnetic quantum number of the total spin of the system along the external magnetic field are ~2. But for the ferromagnetic interaction atoms, there do exist. In addition, there exist only the fully polarized ground-states for the ferromagnetic atoms in the negative quadratic- Zeeman-energy region. The physicsal origin of the dependence of the ground states on the controllable parameters are analyzed. These quantum spin-states can be controlled easily and exactly by modulating the external magnetic field and the height of the optical barrier, which may be a tool for the study of spin-entanglement.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第11期61-65,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11274095) 河南省科技创新杰出青年计划(批准号:114100510021) 河南省教育厅自然科学基础研究计划(批准号:2011B140010)资助的课题~~
关键词 三阱光学超晶格 自旋为1的原子 弱磁场 three-weU optical superlattice, spin-1 atom, weak magnetic field
  • 相关文献

参考文献21

  • 1Greiner M, Mandel O, Esslinger T, H?nsch T W, Bloch I 2002 Nature 419 51.
  • 2Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen A, Sen U 2007 Advances in Physics 56 24.
  • 3Sebby-Strabley J, Anderlini M, Jessen P S, Porto J V 2006 Phys. Rev. A 73 033605.
  • 4Anderlini M, Lee P J, Brown B L, Sebby-Strabley J, Phillips W D, Porto J V 2007 Nature 448.
  • 5F?lling S, Trotzky S, Cheinet P, Feld M, Saers R, Widera A, Müller T, Bloch I 2007 Nature.
  • 6Cheinet P, Trotzky S, Feld M, Schnorrberger U, Moreno-Cardoner M, F?lling S, Bloch I 2008 P.
  • 7Trotzky S, Chen Y A, Schnorrberger U, Cheinet P, Bloch I 2010 Phys. Rev. Lett. 105 265303.
  • 8Wagner A, Bruder C, Demler E 2011 Phys. Rev. A 84 063636.
  • 9Zhang Y B, Harri M, Kalle-Antti S 2005 Chin. Phys. Lett. 22 536.
  • 10Pang W, Li Z B, Bao C G 2007 Chin. Phys. Lett. 24 2745.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部