期刊文献+

SN^-分子离子的势能函数和光谱常数研究 被引量:4

Potential energy function and spectroscopic parameters of SN- molecular ion
原文传递
导出
摘要 采用耦合簇CCSD(T)方法结合系列相关一致基组aug-cc-pVXZ(X=D,T,Q,5)对基态SN分子离子(X3Σ)进行了结构优化和单点能扫描计算.用四种方法进行基组外推得到该体系的平衡核间距Re=0.15852nm,谐振频率ωe=948.05cm1,离解能De=3.934eV均与实验数据符合得很好.对单点能扫描结果用9参数Murrell-Sorbie势能函数进行了最小二乘拟合,得到了体系的解析势能函数表达式,并进一步推导出了体系的力常数和光谱常数.拟合所得势能曲线准确地再现了SN-分子离子的离解能和平衡结构特征.通过求解核运动的径向薛定谔方程,得到了无转动SN-(X3Σ-)的全部振动态,并进一步计算出了各振动能级相应的分子常数.与实验结果及其他理论研究结果的对比表明,本文关于SN-分子离子平衡常数和光谱常数的计算结果达到了较高的精度,能为进一步的实验探测和理论研究提供参考依据. The molecular structure of the ground electronic state (X3Σ-) of SN- molecular ion has been calculated by using the CCSD(T) method in combination with the correlation-consistent basis sets aug-cc-pVXZ (X = D, T, Q, 5). The equilibrium internuclear distance Re, harmonic frequency ωe and dissociation energy De of the molecular ion are derived and are extrapolated to the complete basis set limit. Comparisons of corresponding parameters between this work and those reported previously indicate our results agree well with the experimental data. A reliable potential energy curve is obtained and is perfectly reproduced in the form of the Murrell-Sorbie analytical potential function. We have utilized the potential energy curve to calculate the relevant spectroscopic parameters of the ground state of the system. The vibrational levels and corresponding molecular constants for the X3E- state are obtained by solving the radial Schrodinger equation of the nuclear motion. Calculations in the present work indicate that an improvement in theoretical computations of SN- molecular ion is achieved.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第11期194-201,共8页 Acta Physica Sinica
基金 湖北省教育厅重点项目(批准号:D20101303) 湖北省高等学校优秀中青年科技创新团队计划项目(批准号:T201204) 长江大学博士启动金项目资助的课题~~
关键词 势能曲线 解析势能函数 光谱常数 振动能级 potential energy curve, analytical potential energy function, spectroscopic parameters, vibrational lev-els
  • 相关文献

参考文献33

  • 1Chivers T 2005 A Guide to Chalcogen-Nitrogen Chemistry (Singapore: World Scientific Publish.
  • 2Oakley R T 1988 Prog. Inorg. Chem. 36 299.
  • 3Roesky H W 1979 Adv. Inorg. Chem. Radiochem. 22 239.
  • 4Bojes J, Chivers T, Oakley R T, Womersh?user G, Schnauber M 2007 Binary Cyclic Nitrogen-Sul.
  • 5Greene R L, Street G B, Suter L J 1975 Phys. Rev. Lett. 34 577.
  • 6Labes M M, Love P, Nichols L F 1979 Chem. Rev. 79 1.
  • 7Kelly P F, Woollins J D 1986 Polyhedron 5 607.
  • 8Chivers T, Edelmann F 1986 Polyhedron 5 1661.
  • 9Burnett S M, Felgerle C S, Stevens A E, Lineberger W C 1982 J. Phys. Chem. 86 4486.
  • 10Bruna P J, Grain F 1987 J. Phys. B: At. Mol. Phys. 20 5967.

同被引文献49

  • 1Zeeman P B 1950 Phys. Rev. 80 902.
  • 2Zeeman P B 1951 Can. J. Phys. 29 336.
  • 3Koryazhkin V A, Mal’tsev A A 1968 Moscow Univ. Chem. Bull.Engl. Transl. 23 63.
  • 4McDonald J K, Innes K K 1969 J. Mol. Spectrosc. 29 251.
  • 5Uy O M, Drowart J 1970 High Temp. Sci. 2 293.
  • 6Gingerich K A 1970 J. Chem. Soc. D: Chem. Commun. 10 580.
  • 7Singh J, Tewari D P, Mohan H 1971 Indian J. Pure. Appl. Phys. 9 269A.
  • 8Brom J M, Weltner W 1972 J. Chem. Phys. 57 3379.
  • 9Yang X Z, Boggs J E 2005 Chem. Phys. Lett. 410 269.
  • 10Jiang L J, Wang X X 2012 Journal of Henan Polytechnic Polytechnic University 31 494 (in Chinese).

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部