期刊文献+

基于小波分析的最小二乘支持向量机轨道交通客流预测方法 被引量:35

A Wavelet Analysis Based LS-SVM Rail Transit Passenger Flow Prediction Method
下载PDF
导出
摘要 针对城市轨道交通客流预测问题,采用离散一维Daub4小波分析方法对某一时间段的原始客流时间序列数据进行分解;以分解得到的高频分量和低频分量为样本数据,对最小二乘支持向量机进行训练,确定最小二乘支持向量机的核参数σ,以及系数α和b。利用训练后的最小二乘支持向量机预测未来一段时间客流时间序列数据的高频分量和低频分量,然后再利用Daub4小波分析方法对预测的高频分量和低频分量进行数据重构,从而得到预测的未来一段时间客流时间序列数据。与历史平均预测法和灰色预测法进行比较,结果表明,基于小波分析的支持向量机客流预测方法用于轨道交通短期客流预测具有更好的精度。 To deal with rail transit passenger flow forecasting problem, the discrete one-dimensional Daub4 wavelet analysis method was adopted to decompose the original time series data of passenger flow in a cer- tain period into different low-frequency and high-frequency components, which were used as sample data to train least squares support vector machine (LS-SVM) to determine LS-SVM nuclear parameter a, coeffi- cients a and b. The trained LS-SVM was used to predict the low-frequency and high-frequency components of passenger flow time series data in a future period of time. Then Daub4 wavelet analysis method was a- gain adopted to reconstruct the predicted low-frequency and high-frequency components to obtain the pre- dicted time series data of passenger flow in a future period of time. Compared with historical average pre- diction method and gray prediction method, results show that wavelet analysis based SVM passenger flow prediction method has higher accuracy in short-term passenger flow prediction for rail transit.
作者 杨军 侯忠生
出处 《中国铁道科学》 EI CAS CSCD 北大核心 2013年第3期122-127,共6页 China Railway Science
基金 国家自然科学基金资助项目(60834001) 国家科技支撑计划项目(2011BAG01B02)
关键词 轨道交通 客流预测 短期预测 小波分析 支持向量机 数据处理 Rail transit Passenger flow prediction Short-term prediction Wavelet analysis Support vector machine Data processing
  • 相关文献

参考文献13

  • 1钟绍林.城际快速轨道交通客流预测方法研究[J].铁道运输与经济,2007,29(5):71-74. 被引量:2
  • 2马鹤龄,郭志勇.轨道交通客流预测非集聚模型应用初探[J].华中科技大学学报(城市科学版),2002,19(1):65-67. 被引量:7
  • 3孔雪萍.短时交通信息动态预测方法的研究与实现[D].北京:北京航空航天大学,2010.
  • 4CHEN C,CHEN J,BARRY J. Diurnal Pattern of Transit Ridership:a Case Study of the New York City SubwaySystem [J],Journal of Transport Geography,2009,17(3):176-186.
  • 5ZHANG X Y,JOHN A R. Short-Term Travel Time Prediction Using a Time-Varying Coefficient Linear Model [J].Transportation Research Part C,2003,11(3/4):187-210.
  • 6VLAHOGIANNI E I,GOLIA J C,KARLAFTIS M G. Short-Term Traffic Forecasting:Overview of Objectives andMethods [J],Transport Reviews,2004,24(5):533-557.
  • 7ALFA A S. A Review of Models for the Temporal Distribution of Peak Traffic Demand [J]. Transportation ResearchPart B,1986,20(6):491-499.
  • 8ABDEL M A,PEMMANABOINA R Calibrating a Real-Time Traffic Crash Prediction Model Using ArchivedWeather and Its Traffic Data [J],IEEE Transactions on Intelligent Transportation Systems,2006,2(7):167-174.
  • 9SIMROTH A,ZAHLE H. Travel Time Prediction Using Floating Car Data Applied to Logistics Planning [J]. IEEETransaction on Intelligent Transportation Systems* 2011,12(1):243-253.
  • 10WU C H,HO J M,LEE D T. Travel-Time Prediction with Support Vector Regression [J]. IEEE Transaction onIntelligent Transportation,2004,5(4):276-281.

二级参考文献6

  • 1Vapnik V N. The nature of statistical learning theory [ M ]. Berlin : Springer, 1995.
  • 2Schlkopf B, Smola A. Learning with kernels:support vector machines, regularization, and beyond [ R ]. Cambridge, MA : MITPress ,2002.
  • 3Wu Youxi, Guo Lei, Dong Guoya, et al. Tissue Conductivity Estimation in Two-Dimension Head Model Based on Support Vector Machine [ C ]//Proceedings of the 2006 IEEE Engineering in Medicine and Biology 28th Annual Conference. 2006 : 1130 - 1133.
  • 4张锦,赵士军,朱炜,等.穗莞深城际快速轨道交通客流预测[R].成都:西南交通大学,2005.
  • 5张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272
  • 6张晋,李冬黎,李平.遗传算法编码机制的比较研究[J].中国矿业大学学报,2002,31(6):637-640. 被引量:21

共引文献21

同被引文献278

引证文献35

二级引证文献176

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部