期刊文献+

Steganalysis and improvement of a quantum steganography protocol via a GHZ_4 state

Steganalysis and improvement of a quantum steganography protocol via a GHZ_4 state
下载PDF
导出
摘要 Quantum steganography that utilizes the quantum mechanical effect to achieve the purpose of information hiding is a popular topic of quantum information. Recently, E1 Allati et al. proposed a new quantum steganography using the GHZ4 state. Since all of the 8 groups of unitary transformations used in the secret message encoding rule change the GHZ4 state into 6 instead of 8 different quantum states when the global phase is not considered, we point out that a 2-bit instead of a 3-bit secret message can be encoded by one group of the given unitary transformations. To encode a 3-bit secret message by performing a group of unitary transformations on the GHZ4 state, we give another 8 groups of unitary transformations that can change the GHZ4 state into 8 different quantum states. Due to the symmetry of the GHZ4 state, all the possible 16 groups of unitary transformations change the GHZ4 state into 8 different quantum states, so the improved protocol achieves a high efficiency. Quantum steganography that utilizes the quantum mechanical effect to achieve the purpose of information hiding is a popular topic of quantum information. Recently, E1 Allati et al. proposed a new quantum steganography using the GHZ4 state. Since all of the 8 groups of unitary transformations used in the secret message encoding rule change the GHZ4 state into 6 instead of 8 different quantum states when the global phase is not considered, we point out that a 2-bit instead of a 3-bit secret message can be encoded by one group of the given unitary transformations. To encode a 3-bit secret message by performing a group of unitary transformations on the GHZ4 state, we give another 8 groups of unitary transformations that can change the GHZ4 state into 8 different quantum states. Due to the symmetry of the GHZ4 state, all the possible 16 groups of unitary transformations change the GHZ4 state into 8 different quantum states, so the improved protocol achieves a high efficiency.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第6期199-202,共4页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 61170272,61272514,61003287,and 61070163) the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100005120002) the Fok Ying Tong Education Foundation (Grant No. 131067) the Natural Science Foundation of Shandong Province,China (Grant No. ZR2011FM023) the Outstanding Research Award Fund for Young Scientists of Shandong Province,China (Grant No. BS2011DX034) the Fundamental Research Funds for Central Universities of China (Grant No. BUPT2012RC0221)
关键词 quantum steganography GHZ4 entangled state quantum cryptography quantum communication quantum steganography, GHZ4 entangled state, quantum cryptography, quantum communication
  • 相关文献

参考文献46

  • 1Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf on Computers', Systems, and Signal Processing, 12-19.December, 1984, Bangalore, India, p. 175.
  • 2Ekert A K 1991 Phys. Rev. Lett. 67 661.
  • 3Zhu C H, Pei C X, Quan D X, Gao J L, Chen N and Yi Y H 2010 Chin. Phys. Lett. 27 090301.
  • 4Zhou Y Y and Zhou X J 2011 Acta Phys. Sin. 60 100301 (in Chinese).
  • 5Zhou N R, Wang L J, Gong L H, Zuo X W and Liu Y 2011 Opt. Com- mun. 284 4836.
  • 6Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648.
  • 7Chen X B, Yang S, Su Y and Yang Y X 2012 Phys. Sct: 86 055002.
  • 8Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2005 Phys. Rev. A 72 044301.
  • 9Zhang Z R, Liu W T and Li C Z 2011 Chin. Phys. B 20 050309.
  • 10Chen X B, Niu X X, Zhou X J and Yang Y X 2012 Quantum Inf. Pro- cess. 12 365.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部