期刊文献+

One-dimensional diffusion of vacancies on an Sr/Si(100)-c(2×4) surface

One-dimensional diffusion of vacancies on an Sr/Si(100)-c(2×4) surface
下载PDF
导出
摘要 An Sr/Si(100)-c(2 ×4) surface is investigated by high-resolution scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). The semiconductor property of this surface is confirmed by STS. The STM images of this surface shows that it is bias-voltage dependent and an atomic resolution image can be obtained at an empty state under a bias voltage of 1.5 V. Furthermore, one-dimensional (ID) diffusion of vacancies can be found in the room-temperature STM images. Sr vacancies diffuse along the valley channels, which are constructed by silicon dimers in the surface. Weak interaction between Sr and silicon dimers, low metal coverage, surface vacancy, and energy of thermal fluctuation at room temperature all contribute to this 1D diffusion. An Sr/Si(100)-c(2 ×4) surface is investigated by high-resolution scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). The semiconductor property of this surface is confirmed by STS. The STM images of this surface shows that it is bias-voltage dependent and an atomic resolution image can be obtained at an empty state under a bias voltage of 1.5 V. Furthermore, one-dimensional (ID) diffusion of vacancies can be found in the room-temperature STM images. Sr vacancies diffuse along the valley channels, which are constructed by silicon dimers in the surface. Weak interaction between Sr and silicon dimers, low metal coverage, surface vacancy, and energy of thermal fluctuation at room temperature all contribute to this 1D diffusion.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第6期481-484,共4页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 60771066)
关键词 Sr/Si(100)-c(2 × 4) STM diffusion of vacancies Sr/Si(100)-c(2 × 4), STM, diffusion of vacancies
  • 相关文献

参考文献14

  • 1McKee R A, Walker F J and Chisholm M F 1998 Phys. Rev. Lett. 81 3014.
  • 2McKee R A, Walker F J, Nardelli M B, Shelton W A and Stocks G M 2003 Science 300 1726.
  • 3Ashman C R, Forest C J, Schwarz K and Bl6chl P E 2004 Phys. Rev. B 69 075309.
  • 4Qin Z H, Shi D X, Pang S J and Gao H J 2008 Chin. Phys. B 17 1055.
  • 5Zhang H G, Mao J H, Liu Q, Jiang N, Zhou H T, Guo H M, Shi D X and Gao H ,1 2010 Chin. Phys. B 19 018105.
  • 6Wu K, Huang Q H, Zhang H J, Liao and He P M 2012 Chin. Phys. B 21 037202.
  • 7Reiner J W, Garrity K F, Walker F J, Beigi S I and Ahn C H 2008 Phys. Rev. Lett. 101 105503.
  • 8Wei Y, Hu X M, Liang Y, Jordan D C, Craigo B, Droopad R, Yu Z, Demkov A, Edwards J L and Ooms W J 2002 J. Vac. Sci. Technol. B 20 1402.
  • 9Du W H, Wang B, Xu L, Hu Z P, Cui X F, Pan B C, Yang J L and Hou J G 2008 J. Chem. Phys. 129 164707.
  • 10Ojima K, Yoshimura M and Ueda K 2002 Phys. Rev. B 65 075408.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部