期刊文献+

The effects of InGaN layer thickness on the performance of InGaN/GaN p-i-n solar cells

The effects of InGaN layer thickness on the performance of InGaN/GaN p-i-n solar cells
下载PDF
导出
摘要 InGaN/GaN p-i-n solar cells, each with an undoped In0.12Ga0.88N absorption layer, are grown on c-plane sapphire substrates by metal-organic chemical vapor deposition. The effects of the thickness and dislocation density of the absorp- tion layer on the collection efficiency of InGaN-based solar cells are analyzed, and the experimental results demonstrate that the thickness of the InGaN layer and the dislocation density significantly affect the performance. An optimized InGaN- based solar cell with a peak external quantum efficiency of 57% at a wavelength of 371 nm is reported. The full width at half maximum of the rocking curve of the (0002) InGaN layer is 180 arcsec. InGaN/GaN p-i-n solar cells, each with an undoped In0.12Ga0.88N absorption layer, are grown on c-plane sapphire substrates by metal-organic chemical vapor deposition. The effects of the thickness and dislocation density of the absorp- tion layer on the collection efficiency of InGaN-based solar cells are analyzed, and the experimental results demonstrate that the thickness of the InGaN layer and the dislocation density significantly affect the performance. An optimized InGaN- based solar cell with a peak external quantum efficiency of 57% at a wavelength of 371 nm is reported. The full width at half maximum of the rocking curve of the (0002) InGaN layer is 180 arcsec.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第6期666-669,共4页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation for Distinguished Young Scholars,China (Grant No. 60925017) the National Natural Science Foundation of China (Grant Nos. 10990100,60836003,60976045,61223005,and 61176126) the National Basic Research Program of China (Grant No. 2007CB936700)
关键词 nitride materials crystal growth solar cell X-ray diffraction nitride materials, crystal growth, solar cell, X-ray diffraction
  • 相关文献

参考文献17

  • 1Matioli E, Neufeld C, Iza M, Cruz S C, Al-heji A A, Chen X, Farrell R M, Keller S, Denbaars S, Mishra U, Nakamura S, Speck J and Weis- buch C 2011 Appl. Phys. Lett. 98 021102.
  • 2Dahal R, Pantha B, Li J, Lin J Y and Jiang H X 2009 AppL Phys. Lett. 94 063505.
  • 3Jani O, Ferguson I, Honsberg C and Kurtz S 2007 App1. Phys. Lett. 91 132117.
  • 4Zhu J H, Wang L J, Zhang S M, Wang H, Zhao D G, Zhu J J, Liu Z S, Jiang D S and Yang H 2011 Chin. Phys. B. 20 077804.
  • 5Xue J, Chen D, Liu B and Xie Z 2009 Chin. Phys. Lett. 26 098102.
  • 6Wu J, Walukiewicz W, Yu K M, Shan W and Ager J W 2003 J. Appl. Phys. 94 6477.
  • 7Lai K Y, Lin G J, Lai Y, Chen Y F and He J H 2010 AppL Phys. Lett. 96 081103.
  • 8Kuwahara Y, Fujii T, Fujiyama Y, Sugiyama T, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I and Amano H 2010 AppI. Phys. Express 3 111001.
  • 9Sheu J K, Yang C C, Tu S, Chang K, Lee M, Lai W and Peng L 2009 IEEE Electron. Dev. Lett. 30 225.
  • 10Niu X B, Gerald B S and Niu F 2011 Appl. Phys. Left. 99 213102.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部