摘要
光谱相似性测度是高光谱遥感影像信息提取的关键。在欧氏距离和光谱角余弦的基础之上提出一种变权重组合的光谱相似性测度,即光谱变化权重相似性测度。这种光谱相似性测度可根据不同地物类别自动对欧氏距离和光谱角余弦测度指标配比权重。选用标准光谱库和机载OMIS高光谱影像对SCWM进行测试,并引入误分率和混淆矩阵对分类结果进行评价。结果表明,相对于仅采用一种或两种光谱相似性测度的分类方法,光谱变化权重相似性测度具有更精细的光谱识别能力。
The spectral similarity measure is the key to extract the information from hyperspectral remote sensing imagery, A new changing-weight spectral similarity, called spectral changing-weight similarity measure (SCWM), was proposed based on the combination of Euclidean distance and spectral angle cosine, According to different land covers, SCWM can automatically alter the weight of Euclidean distance and spectral angle cosine, The classi- fication accuracy of different spectral similarity measures was compared by using the misclassification rate of the standard spectral library data and the confusion matrix of the airborne OMIS hyperspectral image, The experimental results demonstrate that spectral changing-weight similarity measure is more effective than the spectral similarity measure by taking into account one spectral feature or two spectral features to the precise classification.
出处
《测绘学报》
EI
CSCD
北大核心
2013年第3期418-424,432,共8页
Acta Geodaetica et Cartographica Sinica
基金
国家973计划(2011CB952001)
地表过程与资源生态国家重点实验室资助项目(2013-ZY-14)
中央高校基本科研业务费专项资金
关键词
高光谱影像
相似性测度
光谱变化权重相似性测度
遥感分类
hyperspectral image
similarity measure
spectral changing-weight similarity measure
remote sensing classification